Reg	istra	tion no:												
Tota	al Nu	mber of Pag	ges: 2	102			102			102			102	MCA MCC504
		5 th So	emeste ATIVE		HNIC	QUE.		Mod						
102		102		102	Ma	x m	3 Ho arks le:Y≎	: 70		102			102	10
Α	nsw	er Questic The fig	on No.1 gures ir				-				-			e rest.
Q1		Answer the	following	ques	tions	:	102			102			102	(2 x 10)
	(a) (b) (c)	What do yo Explain the example. What is mid	markovia	an pro	perty	y of a	stoc	hasti	c pro	cess	with	a sui		
102	(d)	random nur Explain ho inverse tran	mber. w accep	tance	e rej	ectio	102 n m e	ethod	l has	102 s ad	vanta		102	10
	(e)	Explain counter variables and system state variables in a discrete event simulation.												
102	(f) (g)	What is "Absorbing State". Explain with example. What is random number? What are the various techniques for generation of random number?												
	(h) (i)	Explain inve	erse trans reduction	form is a	meth n es	od in			_					
	(j)	What are th	e importa	ant pa	rame	ters i	in a c	lueuir	ng sy	stem	?			
Q2	(a)		$f(x) = \frac{1}{2}(x)$	x ² – 2x	(³ + x ²	⁴), 0 :	≤ x ≤	1					•	(5)
	(b)	Evaluate	the in	tegra	\int_0^1	X($1 + \lambda$	(²) -	² d	x b	y s	imula	ation	
102		technique 45, 67, 89	_			ving	rado 102	m mc	numl	bers 102	. 15	, 14,	30 ,	(5)

Q3 (a) Consider a bag full of Rs.500 and Rs. 1000 notes with old and new currency. If the notes are picked randomly there are having two states, state 1 (Getting a new note), state 0 (Getting an old note) & it is having the following one step transition probabilities

$$P{X_{t+1}=0 \mid X_t=0}=0.3$$

 $P{X_{t+1}=0 \mid X_t=1}=0.6$

Define the n step transition matrix when n=2 and Draw the transition diagram.

(5)

- (b) Write down the characteristics of markov decision process. (5)
- Q4 Explain the various state of a markov chain and identify the various (10) states in the following one step transition probability.

State	0	1	2	3	4
0	1/4	2/4	1/4	0	0
1	1/2	1/2	0	0	0
2	0	0	1	0	0
3	0	0	0	2/3	1/3
4	1	0	0	0	0

- Q5 (a) Explain various process of simulation of a queuing system. (5)
 - (b) What do you mean by importance sampling ? Explain how it is useful in case of a population research. (5)
- Q6 (a) State the rejection method for generation of random number. (5)
 - (b) How Chi-square test is useful for statistical validation of data, explain (5) briefly.
- Q7 (a) Explain how antithetic variables are used in variance reduction. (5)
 - (b) If S is a standard normal random variable, design a study using antithetic variable to estimate $\theta = E[S^3 e^s]$
- Q8 Write short notes on the following (5 x 2)
 - (a) Stratified Sampling
 - (b) Variance reduction techniques