| | | | , , | | | | ı | , , , , , , , , , , , , , , , , , , , | | | |--------------------------------------|--|--|---|-----------------------------|------------------------------------|---------------------------------|---------------------------|---|-------------------|----------------------| | Registr | ation no: | | | | | | | | | | | Γotal Nu | ımber of <u>P</u> aડ્ | ges:02 | 102 | | 102 | | 102 | | 102 | MCA ₂ | | | | 3 rd Sen
PR | | BILITY | k Exar
′ AND
NCH: M | STAT | | | | | | 102 | 102 | | 102 | Max Q.CC | : 3 Ho
Marks:
DE: Y | 70
718 | 102 | _ | 102 | 102 | | Ansv | ver Question
The fi | on No.1
gures i | | | - | • | | • | | rest. | | Q1 02 | Answer the | followi | ng ques | stions: | 102 | | 102 | | 102 | (2x10) ¹² | | a)
b)
c) | A die is rolled
number and t
State Baye's
What are the | the coin s
theorem? | hows a l | nead. | · | | | e die shov | vs an odd | | | d)
e)
102 f)
g)
h)
i) | What is the p
What is the d
What is Stand
What is samp
Define one to
Define most of
Define Type- | probability
lifference
dard Erro
pling distri
ailed and t
efficient e | that a le
betweer
r? 102
bution?
two tailed | eap yean Point of test. | r contair
Estimatio | s 53 Son and | undays? | | ገ ?
102 | 102 | | Q2 | What is a pro | | | | ion? If X | is disc | rete ran | dom varia | able having | (2+8) | | | x | • | 1 | 2 | 3 | | 4 | 5 | 6 | 7 | | | $p(X=x_i)$ | 0 | k | 6k ² | 2k | | 3k | 4k ² | 3k | | | 30 -\ | Find (i)the va | | | | | | | | | | | Q3 a) | Two random | (| | - | | sity tun | | | | (5) | | 102 | f(x,y) = | ` | | | | | 102 | | 102 | 102 | | b) | Show that X
Check wheth
A typist was
found that the
distributed. If
(ii)between 1 | er the cor
given ar
he report
10 pages | nditional
assign
contair
are sel | density
ment to
ns 30 | / functior
o type 2
typing e | i is vali
00 pag
errors a | d.
les of a
and the | project re | eport. It wa | nly `´ | | | , , | | - | | | | | | | | Q4 a) If X is normally distributed with mean 8 and standard deviation 4 then find (i) $p(5 \le X \le 10)$ (ii) $p(10 \le X \le 15)$ (iii) $p(X \le 15)$ (5) | | b) | State and prove | Chebysl | nev's Ine | equality | , | | | | | | (5) | |------------------|----|--|--|--|--|--|--|---|------------------------|---|-------------------------|-----------------| | Q5 | a) | variable with the following probability distribution. | | | | | | | | | | (5) | | 102 | | 102 | | 102
X | | 3 ¹⁰² | 6 | | 9 | | 102 | 102 | | | | | P | (X=xi) | 1 | /6 | 1/ | /2 | 1/: | 3 | | | | | b) | Find E(X), E(X^2), Var(X) and E[$(1+2X)^2$].
Consider a Poisson distribution with probability mass function: (5) | | | | | | | | | | (5) | | 102 | | $f(x) = \frac{1}{x}$ | $\frac{e^{-\lambda}\lambda^x}{x!}, x$ | :1= 0,1,2 | 2,3, | • 102 | | 102 | | | 102 | 102 | | | | Suppose that a | random | sample | X_1, X | o 9 • • • • | X is | taken f | rom the | e distrib | oution. | | | | | What is the max | | | - | _ | | - | | - | | | | | | What is the max | annann inc | omiood | ootimat | 0 01 70 | • | | | | | | | Q6 | a) | The specimen o | f aluminu | ım wires | s drawn | from a | large l | ot has t | the follo | owing b | reaking | (5) | | | • | strength (in kg. | | | | | | | | | | ` , | | 102 | | 102 | | 4,596,5 | • | | | • | • | | 102 | 102 | | | | Test whether the 578kg.weight .U | | | • | - | ne lot m | nay be t | taken to | o be | | | | | | 576kg.weight.U | se 0.05 i | everors | signinca | ince. | | | | | | | | | b) | In an anti-malar persons out of | | | | | | | | | | (5) | | | | below: | - 10 10 p | opulatio | | 240.111 | | | evel c | a303 13 | SIIUWII | | | 101 | | below:
Treatment | | Feve | ər | 240.111 | No Fe | /er | lever c | Tota | I | 102 | | 102 | | below: Treatment Quinine | | Feve | er | 102 | No Fev
792 | /er | level c | Total | 102 | 102 | | 102 | | below: Treatment Quinine No Quonine | | Feve
20
220 | er
) | 102 | No Fev
792
2216 | /er | level c | Total
812
2436 | 102 | 102 | | 102 | | below: Treatment Quinine No Quonine Total |) | Feve
20
220
240 | er
)
) | 102 | No Fev
792
2216
3008 | /er | evel c | Total | 102 | 102 | | 102 | | below: Treatment Quinine No Quonine |) | Feve
20
220
240 | er
)
) | 102 | No Fev
792
2216
3008 | /er | level c | Total
812
2436 | 102 | 102 | | 10:
Q7 | | Treatment Quinine No Quonine Total Discuss the use The following | fulness of | Feve
20
220
240
of quinin | er)) e in che | ecking the | No Fev
792
2216
3008
malaria | /er | | Total
812
2436
3248 | 102 | (10) | | | | Treatment Quinine No Quonine Total Discuss the use | fulness of | Feve
20
220
240
of quinin | er)) e in che | ecking the | No Fev
792
2216
3008
malaria | /er | | Total
812
2436
3248 | 102 | | | Q7 | | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of | fulness of are measuring for a second | Feve
20
220
240
of quinin
easurem | er in che nents of | ecking i | No Fevente Property P | ver S S S velocity(gine: | (x) and | Total
812
2436
3248
d eva | l
102
5
6
7 | (10) | | Q7 | | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 | fulness of are me burning f | Feve
20
220
240
of quinin
easurem | er in che nents of | ecking i | No Fevente Property P | ver S S S velocity(gine: | (x) and | Total
812
2436
3248
d eva | l
102
5
6
7 | (10) | | Q7 | | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 | fulness of are measuring for a second | Feve
220
240
of quinin
easurem
uel drop | e in che | ecking in the an important the second three | No Fever 792 2216 3008 malaria air vulse engle 220 | ver S S velocity(gine: 26002 | (x) and | Total
812
2436
3248
d eva | poration | (10) | | Q7 | | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec | fulness of are me burning f 60 | Feve
20
240
240
of quinin
easurem
uel drop
12100 | e in che nents o lets in 140 0.78 | ecking the an important 180 | No Fever 792 2216 3008 malaria air vulse eng 220 0.75 | /er 6 8 7 8 7 8 7 8 8 7 8 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 | (x) and 300 | Total
812
2436
3248
d eva | poration | (10) | | Q7 | | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec 0.1 | fulness of are me burning f 60 8 0.37 | Feve
20
240
240
of quinin
easurem
uel drop
100
0.35 | e in chece i | ecking the an important 180 | No Fever 792 2216 3008 malaria air vulse eng 220 0.75 | /er 6 8 7 8 7 8 7 8 8 7 8 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 | (x) and 300 | Total
812
2436
3248
d eva | poration | (10) | | Q7 | | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec (a)Fit a straight (b)Find regressi | fulness of are metaburning for 60 8 0.37 | Feve
20
240
of quinin
easurem
uel drop
12100
0.35 | e in checents of the colets in 140 0.78 ca by the on Y. | ecking in the an important important in the anti-portant important in the anti-portant | No Fever 792 2216 3008 malaria air vulse engle 220 0.75 | relocity(gine: 260 ₀₂ 1.18 | (x) and 300 1.36 ares. | Total
812
2436
3248
d eval
340 | poration | (10) | | Q7 | | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec 0.1 | fulness of the following follows are measuring follows are measured for the th | Feve
20
240
of quinin
easurem
uel drop
12100
0.35 | e in checolets in 140 0.78 ca by the on Y. | ecking of the an important 180 0.56 e method | No Fever 792 2216 3008 malaria air vulse engle 220 0.75 od of lease Air verse vers | ver velocity(gine: 260,2 1.18 ast squ | (x) and 300 1.36 ares. | Total
812
2436
3248
d eval
340
1.17 | poration 1.65 | (10) | | Q7 | | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec (a)Fit a straight (b)Find regressi (c)Estimate the (d)What should | fulness of the following f | Fever 20 220 240 of quinin easurem 100 0.35 ese data ion of X ion coef coefected | e in che nents of olets in 140 0.78 a by the on Y. fficient welcomes | ecking of the an important 180 0.56 e method | No Fever 792 2216 3008 malaria air vulse engle 220 0.75 od of lease Air verse vers | ver velocity(gine: 260,2 1.18 ast squ | (x) and 300 1.36 ares. | Total
812
2436
3248
d eval
340
1.17 | poration 1.65 | (10) 102 | | Q7 | 2 | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec (a)Fit a straight (b)Find regressi (c)Estimate the (d)What should Write short ans | fulness of the following followin | Fever 20 220 240 of quinin easurem fuel drop 0.35 ese dat ion of X ion coef x pected any TW | e in checolets in 140 0.78 0.78 | ecking of the an important | No Fever 792 2216 3008 malaria air vulse engle 220 0.75 od of lease Air verse vers | ver velocity(gine: 260,2 1.18 ast squ | (x) and 300 1.36 ares. | Total
812
2436
3248
d eval
340
1.17 | poration 1.65 | (10) | | Q7 | a) | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec (a)Fit a straight (b)Find regressi (c)Estimate the (d)What should Write short ans Joint Probability | fulness of are mediurning for 60 8 0.37 line to the exaporate between on a distribut | Fever 20 220 240 of quinin easurem fuel drop 0.35 ese dat ion of X ion coef x pected any TW | e in checolets in 140 0.78 0.78 | ecking of the an important | No Fever 792 2216 3008 malaria air vulse engle 220 0.75 od of lease Air verse vers | ver velocity(gine: 260,2 1.18 ast squ | (x) and 300 1.36 ares. | Total
812
2436
3248
d eval
340
1.17 | poration 1.65 | (10) 102 | | Q7 | 2 | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec (a)Fit a straight (b)Find regressi (c)Estimate the (d)What should Write short ans | fulness of are mediurning for 60 8 0.37 line to the exaporate between on a distribut | Fever 20 220 240 of quinin easurem fuel drop 0.35 ese dat ion of X ion coef x pected any TW | e in checolets in 140 0.78 0.78 | ecking of the an important | No Fever 792 2216 3008 malaria air vulse engle 220 0.75 od of lease Air verse vers | ver velocity(gine: 260,2 1.18 ast squ | (x) and 300 1.36 ares. | Total
812
2436
3248
d eval
340
1.17 | poration 1.65 | (10) 102 | | Q7 | a) | Treatment Quinine No Quonine Total Discuss the use The following coefficient(y) of X cm/sec 20 Y 0.1 mm²/sec (a)Fit a straight (b)Find regressi (c)Estimate the (d)What should Write short ans Joint Probability | fulness of are mediuming for a for a formal formal for a | Feve
20
240
240
of quinin
easurem
uel drop
12100
0.35
nese data
ion of X
ion coef
expected | e in che nents of olets in 140 0.78 a by the on Y. fficient wair velocity proper | ecking of the an important | No Fever 792 2216 3008 malaria air vulse engle 220 0.75 od of lease Air verse vers | ver velocity(gine: 260,2 1.18 ast squ | (x) and 300 1.36 ares. | Total
812
2436
3248
d eval
340
1.17 | poration 1.65 | (10) 102 | Statistical Quality Control 02