Registration no:														
Tota	al Nu	ımber of Pa	ges: 03	102			102			102		1	02	MCA MCC103
1 st Semester Back Examination 2016-17 DISCRETE MATHEMATICS BRANCH: MCA														
102		102		102	Tin Ma Q.C	ne: 3 x Ma COD	B⊪Ho arks E: Y	urs : 70 626		102			02	102
Α	nsw	er Questi	on No.1	l whic	ch is	cor	npu	lsor	y an	d ar	ny fiv	e fro	m th	e rest.
The figures in the right hand margin indicate marks.														
102 Q1	a)	Answer the following questions: (2 x 10) If p is true and q is false, find the truth value of the following $ \Box (p \land q) \lor \Box (q \Leftrightarrow p) $												
	b)	Determine th		,	$\forall x \exists y$	$(x^2 =$	y), i	f the o	doma	in of	each va	riable		
		consists of all real numbers.												
102	c)	What rule of inference is used in the argument?											102	
		If it snows today, the university will close. The university is not close today.												
		Therefore, it did not snow today.												
	d)	Prove that if n is an integer and 3n+2 is odd, then n is odd.												
102	e)	A sequence is defined by the recurrence relation $a_{n+1} = 3a_n + 1$ with $a_0 = 10$. Then find the value of $a_1^{102} + a_2 + a_3$.												
	f) g) h) i)	What is a Hamiltonian Graph? Gibe an example of a Hamiltonian Graph.Show that in a Boolean algebra, the complement of an element is unique.												
102	j)	Consider the e $(00)=00$ e $(01)=0$ Find the min	0000 1101	6	on e: e(10)= e(11)=	10110)	efine	d by	102		11	02	102
Q2	a) b)	Let m and n . Show by man	thematica	ers. Pro	ove the	at n^2 : nat (1)	$=m^2$ $\binom{n+2}{102}$	if and + (12)	only i	if <i>n</i> is	m or ible by	n is -n	n .	(5) (5)
Q3	a)	Explain the pumber of s	olutions	for the	equat			_		-	-			(5)

b) Using Warshall's algorithm find the transitive closure of the relation whose matrix representation is given by

(5)

(5)

(5)

- **Q4** a) Prove that for R to be one equivalence relation on a set A, the following statements are equivalent: (i) a R b (ii) [a] = [b] (iii) $[a] \cap [b] = \phi$.
 - b) Determine the discrete numeric function corresponding to the generating function $A(z) = \frac{1}{z^2 5z + 6}$ (5)
- Q5 a) Using Dijkstra's algorithm find the shortest path from a to z. (5)

b) How many path of length three and four are there from a to d in the simple graph given below? (5)

- **Q6** a) Let R be a symmetric relation on a set A. Then show that the following statements are equivalent.
 - (a) R is an undirected tree.
 - (b) R is connected and acyclic.

- **Q7** a) Consider the partial order \leq defined on A as follows: $m \leq n$ iff m divides n, where $A = \{2, 4, 6, 9, 12, 18, 36, 48, 60, 72\}$. Draw the Hasse diagram and answer the following questions:
 - (i) Is there a greatest element?
 - (ii) Is there a least element?

binary operation, show that G is a group. 102

- (iii) List the minimal elements.
- (iv) Find the least upper bound of (4, 9).
- **b)** Prove that any linear order is a Lattice
- Q8 a) Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in R, ad bc \neq 0 \right\}$ with matrix multiplication as the
 - b) Let G be a group of finite order n and H is a sub group of G. Then show that

(5)