
Reg	istra	tion No:										
Total Number of Pages: 2 MCA MCC301												
3rd Semester Regular/Back Examination – 2015-16 ANALYSIS AND DESIGN OF ALGORITHMS BRANCH(S): MCA												
Time: 3 Hours Max Marks: 70												70
Q.CODE:T179 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.												
Q1	a) b) c)	Answer the Write a note What is Prio What is Bac	es on Gree ority queue	edy A e?								(2 x 10)

- d) What is efficiency of the algorithm?
- e) If $f(n) = 5n^2 + 6n + 4$, then prove that f(n) is $O(n^2)$.
- f) What is the need of analyzing an algorithm?
- g) Ordering by asymptotic growth rates of the following sequence
 - n^{2} , 2^{lgn} , (lgn)!, n^{3} , nlgn
- h) What are the criteria used to identify the best algorithm?
- i) Define NP-hard.
- j) List any two properties of NP-problem
- Q2 Explain the procedure used to calculate time complexity of Insertion sort. (10)
- Q3 a) Why do we use asymptotic notations in the study of algorithms? Briefly (5) describe the three commonly used asymptotic notations
 - b) Show that Quick Sort algorithm takes $O(n^2)$ time in the worst case (5)
- Q4 Discuss the steps in developing a Dynamic Programming Algorithm. (10) Illustrate Matrix Chain Multiplication with a chain of four matrices A, B, C and D with $p_0=5$, $p_1=4$, $p_2=6$, $p_3=2$ and $p_4=7$.
- Q5 Write and discuss the Kruskal's algorithm to find out shortest path for the (10) following graph.

- Q6 a) Solve Fractional knap-sack problem with example.
 - b) Write and discuss the approximation algorithms for travelling salesman (5) problem

(5)

Q7 Apply and explain the backtracking method to solve four queen problem. (10)

(5 x 2)

Q8 Write Short Notes (Any Two)a) NP-complete problems

- b) Branch and Bound techniquesc) Randomized algorithmd) Master Theorem.