

IMIT CUTTACK

M.TECH 2ND SEM

EMBEDDED SYSTEM

SUJEET KUMAR NAYAK

EMAIL ID: sujeetkumarnayak.in@gmail.com

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:2
 Email id: sujeetkumarnayak.in@gmail.com

MODULE-1

 DEFINATION OF Embedded System
 An embedded system can be thought of as a computer hardware system having software embedded in it. An

embedded system can be an independent system or it can be a part of a large system. An embedded system

is a microcontroller or microprocessor based system which is designed to perform a specific task. For

example, a fire alarm is an embedded system; it will sense only smoke.

An embedded system has three components −

 It has hardware.

 It has application software.

 It has Real Time Operating system (RTOS) that supervises the application software and provide mechanism

to let the processor run a process as per scheduling by following a plan to control the latencies. RTOS defines

the way the system works. It sets the rules during the execution of application program. A small scale

embedded system may not have RTOS.

So we can define an embedded system as a Microcontroller based, software driven, reliable, real-time

control system.

Features of Embedded systems

 Single-functioned − An embedded system usually performs a specialized operation and does the

same repeatedly. For example: A pager always functions as a pager.

 Tightly constrained − All computing systems have constraints on design metrics, but those on an

embedded system can be especially tight. Design metrics is a measure of an implementation's

features such as its cost, size, power, and performance. It must be of a size to fit on a single chip,

must perform fast enough to process data in real time and consume minimum power to extend battery

life.

Reactive and Real time − Many embedded systems must continually react to changes in the

system's environment and must compute certain results in real time without any delay. Consider an

example of a car cruise controller; it continually monitors and reacts to speed and brake sensors. It

must compute acceleration or de-accelerations repeatedly within a limited time; a delayed

computation can result in failure to control of the car.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:3
 Email id: sujeetkumarnayak.in@gmail.com

 Microprocessors based − It must be microprocessor or microcontroller based.

 Memory − It must have a memory, as its software usually embeds in ROM. It does not need any

secondary memories in the computer.

 Connected − It must have connected peripherals to connect input and output devices.

 HW-SW systems − Software is used for more features and flexibility. Hardware is used for

performance and security.

Advantages

6 Easily Customizable

6 Low power consumption

6 Low cost

6 Enhanced

Embedded system Design flow steps:

There are different steps involved in Embedded system design flow. These steps depend on
the design methodology. Design methodology is important for optimizing performance, and
developing computer aided design tools.
. They are requirements gathering, specification formulation, architecture design, building of
components, and system integration.

The major goals of the design to be considered are :

● Manufacturing cost;

● Performance (both overall speed and deadlines) and

● Power consumption.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:4
 Email id: sujeetkumarnayak.in@gmail.com

The tasks which need to be performed at each step are the following.

● We must analyze the design at each step to determine how we can meet the

specifications.

● We must then refine the design to add details.

● We must verify the design to ensure that it still meets all system goals, such as
cost, speed, and so on.

Requirements

Informal descriptions gathered from the customer are known as requirements. The

requirements are refined into a specification to begin the designing of the system

architecture. Requirements can be functional or non-functional requirements. Functional

requirements need output as a function of input. Non-functional requirements includes

performance, cost, physical size, weight, and power consumption. Performance may be a

combination of soft performance metrics such as approximate time to perform a user-level

function and hard deadlines by which a particular operation must be completed. Cost

includes the manufacturing, nonrecurring engineering(NRE) and other costs of designing

the system. Physical size and weight are the physical aspects of the final system. These

can vary greatly depending upon the application. Power consumption can be specified in

the requirements stage in terms of battery life.

Specification

Requirements gathered is refined into a specification. Specification serves as the

contract between the customers and the architects. Specification is essential to create

working systems with a minimum of designer effort. It must be specific, understandable

and accurately reflect the customer’s requirements.

Architecture Design

The specification describes only the functions of the system. Implementation of the

system is described by the Architecture. The architecture is a plan for the overall

structure of the system. It will be used later to design the components.The architecture

will be illustrated using block diagrams as shown below.

System integration

After the components are built, they are integrated. Bugs are typically found during the

system integration. Good planning can help us to find the bugs quickly. By debugging a

few modules at a time, simple bugs can be uncovered. By fixing the simple bugs early,

more complex or obscure bugs can be uncovered. System integration is difficult

because it usually uncovers problems. The debugging facilities for embedded systems

are usually much more limited than the desktop systems. Careful attention is needed to

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:5
 Email id: sujeetkumarnayak.in@gmail.com

insert appropriate debugging facilities during design which can help to ease system

integration problems.

System on Chip:-

SoC acronym for system on chip is an IC which integrates all the components into a single chip. It

may contain analog, digital, mixed signal and other radio frequency functions all lying on a single

chip substrate. Today, SoCs are very common in electronics industry due to its low power

consumption. Also, embedded system applications make great use of SoCs.

SoCs consists of:

• Control Unit: In SoCs, the major control units are microprocessors, microcontrollers, digital

signal processors etc.

• Memory Blocks: ROM, RAM. Flash memory and EEPROM are the basic memory units

inside a SoC chip.

• Timing Units: Oscillators and PLLs are the timing units of the System on chip.

• Other peripherals of the SoCs are counter timers, real-time timers and power on reset

generators.

• Analog interfaces, external interfaces, voltage regulators and power management units form

the basic interfaces of the SoCs.

Advantages of SoC

• Low power.

• Low cost.

• High reliability.

• Small form factor.

• High integration levels.

• Fast operation.

• Greater design.

• Small size.

Disadvantages of SoC

• Fabrication cost.

• Increased complexity.

• Time to market demands.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:6
 Email id: sujeetkumarnayak.in@gmail.com

• More verification.

• Very-large-scale integration

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by

combining thousands of transistors into a single chip. VLSI began in the 1970s when

complex semiconductor and communication technologies were being developed. The

microprocessor is a VLSI device.

advantages of VLSI

The increase in density happens through multiple developments. Some of which would be a reduction

in size, management in power consumption among others,

• Reduces the size of circuits

• Reduces the effective cost of the devices

• Increases the operating speed of circuits

• Requires less power than discrete components

• Higher reliability

• Occupies a relatively smaller area.

ARM Microcontroller

The ARM stands for Advanced RISC machine and it is a 32-bit reduced instructions set computer (RISC)

microcontroller. It was first introduced by the Acron computers’ organization in 1987. The ARM is a family of

the microcontroller developed by the different manufacturers such as ST microelectronics, Motorola and so

on. The ARM microcontroller architecture come with a few different versions such as ARMv1, ARMv2 etc

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

History of ARM

Advanced RISC machine (ARM) is the first reduced instruction set computer (RISC) processor for

commercial use, which is currently being developed by ARM Holdings. The history of ARM

processor dates back to 1983 in England when Acorn Computers Ltd officially launched an Acorn

RISC Management project after being inspired to design its own processor by Berkeley RISC, one o

the high-impact projects under ARPA’s (Advanced Research Projects Agency, now converted to

DARPA) VLSI project, dealing with RISC

coined the term ‘RISC.’ As the name suggests, it does not mean that t

100 instructions are qualified to RISC category, but instead they should have an highly optimised

instruction set.

ARM in the beginning was known as Acorn RISC machine. With VLSI Technology Inc. as its silicon

partner, ARM came up with ARM1, the first ARM silicon on April 26, 1985, which was used as a

second processor to the BBC Micro to develop the simulation software to finish work on the support

chips (VIDC, IOC and MEMC) and to increase the operating speed of the CAD softwar

development of ARM2. Apple, whilst developing an entirely new computing platform for its

Newton, a personal digital assistant, found that only Acorn RISC machine was close to the

requirements needed for implementation, but since ARM had no integr

Apple collaborated with Acorn to develop ARM.

ARM pipeline:-

The Process of fetching the next instruction while the current instruction is being executed is called

as “pipelining”. Pipelining is supported by the processor to inc

Increases throughput. Several operations take place simultaneously, rather than serially in pipelining.

The Pipeline has three stages fetch, decode and execute as

Shown below

 EMBEDDED SYSTEM PAGE NO:

Advanced RISC machine (ARM) is the first reduced instruction set computer (RISC) processor for

is currently being developed by ARM Holdings. The history of ARM

processor dates back to 1983 in England when Acorn Computers Ltd officially launched an Acorn

RISC Management project after being inspired to design its own processor by Berkeley RISC, one o

impact projects under ARPA’s (Advanced Research Projects Agency, now converted to

DARPA) VLSI project, dealing with RISC-based microprocessor design led by David Patterson who

coined the term ‘RISC.’ As the name suggests, it does not mean that the processors with less than

100 instructions are qualified to RISC category, but instead they should have an highly optimised

ARM in the beginning was known as Acorn RISC machine. With VLSI Technology Inc. as its silicon

up with ARM1, the first ARM silicon on April 26, 1985, which was used as a

second processor to the BBC Micro to develop the simulation software to finish work on the support

chips (VIDC, IOC and MEMC) and to increase the operating speed of the CAD softwar

development of ARM2. Apple, whilst developing an entirely new computing platform for its

Newton, a personal digital assistant, found that only Acorn RISC machine was close to the

requirements needed for implementation, but since ARM had no integral memory management unit,

Apple collaborated with Acorn to develop ARM.

The Process of fetching the next instruction while the current instruction is being executed is called

as “pipelining”. Pipelining is supported by the processor to increase the speed of program execution.

Increases throughput. Several operations take place simultaneously, rather than serially in pipelining.

The Pipeline has three stages fetch, decode and execute as

PAGE NO:7

Advanced RISC machine (ARM) is the first reduced instruction set computer (RISC) processor for

is currently being developed by ARM Holdings. The history of ARM

processor dates back to 1983 in England when Acorn Computers Ltd officially launched an Acorn

RISC Management project after being inspired to design its own processor by Berkeley RISC, one of

impact projects under ARPA’s (Advanced Research Projects Agency, now converted to

based microprocessor design led by David Patterson who

he processors with less than

100 instructions are qualified to RISC category, but instead they should have an highly optimised

ARM in the beginning was known as Acorn RISC machine. With VLSI Technology Inc. as its silicon

up with ARM1, the first ARM silicon on April 26, 1985, which was used as a

second processor to the BBC Micro to develop the simulation software to finish work on the support

chips (VIDC, IOC and MEMC) and to increase the operating speed of the CAD software used in

development of ARM2. Apple, whilst developing an entirely new computing platform for its

Newton, a personal digital assistant, found that only Acorn RISC machine was close to the

al memory management unit,

The Process of fetching the next instruction while the current instruction is being executed is called

rease the speed of program execution.

Increases throughput. Several operations take place simultaneously, rather than serially in pipelining.

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

The three stages used in the pipeline are:

(i) Fetch : In this stage the ARM processor fetches the instruction from the memory.

(ii) Decode : In this stage recognizes the instruction that is to be executed.

(iii) Execute 2 In this stage the processor processes the instruction and writes the re

desired register.

If these three stages of execution are overlapped, we will achieve higher speed of execution. Such

pipeline exists in version 7 of ARM processor. Once the pipeline is filled, each instructions require s

one cycle to complete execution. Below fig shows three staged pipelined instruction.

In first cycle, the processor fetches instruction 1 from the memory In the second cycle the processor

fetches instruction 2 from the memory and decodes instruction 1. In the third cycle the p

fetches instruction 3 from memory, decodes instruction 2 and executes instruction 1. In the fourth

cycle the processor fetches instruction 4, decodes instruction 3 and executes instruction 2. The

pipeline thus executes an instruction in three cycl

instruction per cycle.

In case of a multi-cycle instruction as shown 1n Fig. 9.10.2(b), instruction 2 (i. e. STR of the store

instruction) requires 4 clock cycles and hence the pipeline stalls for one clock pul

instruction completes execution in the third clock pulse, while the second instruction instead of

completing execution in fourth clock pulse completes the same in fifth clock pulse. Thereafter every

instruction completes execution in one cloc

The amount of work done at each stage can be reduced by increasing the number of stages in the

pipeline. To improve the performance, the processor then can be operated at higher operating

frequency.

 EMBEDDED SYSTEM PAGE NO:

are:

(i) Fetch : In this stage the ARM processor fetches the instruction from the memory.

(ii) Decode : In this stage recognizes the instruction that is to be executed.

(iii) Execute 2 In this stage the processor processes the instruction and writes the result back to

If these three stages of execution are overlapped, we will achieve higher speed of execution. Such

pipeline exists in version 7 of ARM processor. Once the pipeline is filled, each instructions require s

execution. Below fig shows three staged pipelined instruction.

In first cycle, the processor fetches instruction 1 from the memory In the second cycle the processor

fetches instruction 2 from the memory and decodes instruction 1. In the third cycle the p

fetches instruction 3 from memory, decodes instruction 2 and executes instruction 1. In the fourth

cycle the processor fetches instruction 4, decodes instruction 3 and executes instruction 2. The

pipeline thus executes an instruction in three cycles i.e. it delivers a throughput equal to one

cycle instruction as shown 1n Fig. 9.10.2(b), instruction 2 (i. e. STR of the store

instruction) requires 4 clock cycles and hence the pipeline stalls for one clock pulse. The first

instruction completes execution in the third clock pulse, while the second instruction instead of

completing execution in fourth clock pulse completes the same in fifth clock pulse. Thereafter every

instruction completes execution in one clock pulse as seen in this figure.

The amount of work done at each stage can be reduced by increasing the number of stages in the

pipeline. To improve the performance, the processor then can be operated at higher operating

PAGE NO:8

sult back to

If these three stages of execution are overlapped, we will achieve higher speed of execution. Such

pipeline exists in version 7 of ARM processor. Once the pipeline is filled, each instructions require s

In first cycle, the processor fetches instruction 1 from the memory In the second cycle the processor

fetches instruction 2 from the memory and decodes instruction 1. In the third cycle the processor

fetches instruction 3 from memory, decodes instruction 2 and executes instruction 1. In the fourth

cycle the processor fetches instruction 4, decodes instruction 3 and executes instruction 2. The

es i.e. it delivers a throughput equal to one

cycle instruction as shown 1n Fig. 9.10.2(b), instruction 2 (i. e. STR of the store

se. The first

instruction completes execution in the third clock pulse, while the second instruction instead of

completing execution in fourth clock pulse completes the same in fifth clock pulse. Thereafter every

The amount of work done at each stage can be reduced by increasing the number of stages in the

pipeline. To improve the performance, the processor then can be operated at higher operating

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:9
 Email id: sujeetkumarnayak.in@gmail.com

As more number of cycles are required to fill the pipeline, the system latency also increases. The data

dependency between the stages can also be increased as the stages of pipeline increase. So the

instructions need to be schedule while writing code to decrease data dependency.

A five-stage (five clock cycle) ARM state pipeline is used, consisting of Fetch, Decode, Execute,

Memory, and Write back stages. The program counter (PC) points to the instruction being fetched

rather than to the instruction being executed.

During normal operation:

• one instruction is being fetched from memory

• the previous instruction is being decoded

• the instruction before that is being executed

• the instruction before that is performing data accesses (if applicable)

• the instruction before that is writing its data back to the register bank.

A six-stage (six clock cycle) pipeline is used in Jazelle state, consisting of Fetch, Jazelle/Decode

(two clock cycles), Execute, Memory, and Write back stages.

1. The six stages are as follows:

• Fetch instruction (FI):

• Decode instruction ((DI):

• Calculate operand (CO):

• Fetch operands (FO):

• Execute Instruction (EI):

• Write operand (WO):

Fetch instruction: Instructions are fetched from the memory into a temporary buffer before it

gets executed.

Decode instruction: The instruction is decoded by the CPU so that the necessary op codes

and operands can be determined.

Calculate operand: Based on the addressing scheme used, either operands are directly

provided in the instruction or the effective address has to be calculated.

Fetch Operand: Once the address is calculated, the operands need to be fetched from the

address that was calculated. This is done in this phase.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:10
 Email id: sujeetkumarnayak.in@gmail.com

Execute Instruction: The instruction can now be executed.

Write operand: Once the instruction is executed, the result from the execution needs to be

stored or written back in the memory.

An Instruction Set Architecture (ISA) is part of the abstract model of a computer. It defines

how software controls the CPU.

The Arm ISA family allows developers to write software and firmware that conforms to the Arm

specifications, secure in the knowledge that any Arm-based processor will execute it in the same

way. This is the foundation of the Arm portability and compatibility promise.

Arm Instruction Set Architecture

The Arm architecture supports three instruction sets: A64, A32 and T32.

• The A64 and A32 instruction sets have fixed instruction lengths of 32-bits.

• The T32 instruction set was introduced as a supplementary set of 16-bit instructions that

supported improved code density for user code. Over time, T32 evolved into a 16-bit and

32-bit mixed-length instruction set. As a result, the compiler can balance performance

and code size trade-off in a single instruction set.

The ARM Registers has following characteristics:

 ARM has 37 registers in total, all of which are 32-bits long. and it consist of

1 dedicated program counter

1 dedicated current program status register

5 dedicated saved program status registers

30 general purpose registers.

When the processor is executing in ARM state:All instructions are 32 bits in length

All instructions must be word aligned

Therefore the PC value is stored in bits [31:2] with bits [1:0] equal to zero (as instruction cannot be

half word or byte aligned).

R14 is used as the subroutine link register (LR) and stores the return address when Branch with Link

operations are performed, calculated from the PC.

Data-processing instructions ARM has 16 data-processing instructions. Most data-processing

instructions take two source operands, though Move and Move Not take only one. The

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:11
 Email id: sujeetkumarnayak.in@gmail.com

compare and test instructions only update the condition flags. Other data-processing instructions store

a

result to a register and optionally update the condition flag.

CMP, CMN, TST and TEQ always update the condition code flags. The assembler automatically sets

the S bit in

the instruction for them, and the corresponding instruction with the S bit.

Instruction encoding

<opcode1>{<cond>}{S} <Rd>, <shifter_operand>

<opcode1> := MOV | MVN

<opcode2>{<cond>} <Rn>, <shifter_operand>

<opcode2> := CMP | CMN | TST | TEQ

<opcode3>{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

<opcode3> := ADD | SUB | RSB | ADC | SBC | RSC | AND | BIC | EOR | ORR

I bit Distinguishes between the immediate and register forms of <shifter_operand>.

S bit Signifies that the instruction updates the condition codes.

Rn Specifies the first source operand register.

Rd Specifies the destination register.

shifter_operand Specifies the second source operand. See Addressing Mode 1 - Data-processing

operands on page A5-2 for details of the shifter operands.

List of data-processing instructions

ADC Add with Carry.

ADD Add.

AND Logical AND.

BIC Logical Bit Clear.

CMN Compare Negative.

CMP Compare.

EOR Logical EOR.

MOV Move.

MVN Move Not.

ORR Logical OR.

RSB Reverse Subtract.

RSC Reverse Subtract with Carry.

SBC Subtract with Carry.

SUB Subtract.

TEQ Test Equivalence.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:12
 Email id: sujeetkumarnayak.in@gmail.com

Multiply instructions

ARM has several classes of Multiply instruction:

Normal 32-bit x 32-bit, bottom 32-bit result

Long 32-bit x 32-bit, 64-bit result

Halfword 16-bit x 16-bit, 32-bit result

Word ∞ halfword 32-bit x 16-bit, top 32-bit result

Most significant word

32-bit x 32-bit, top 32-bit result

Dual halfword dual 16-bit x 16-bit, 32-bit result.

All Multiply instructions take two register operands as the input to the multiplier. The ARM

processor does not directly support a multiply-by-constant instruction because of the efficiency of

shift and add, or shift and reverse subtract instructions.

Normal multiply

There are two 32-bit x 32-bit Multiply instructions that produce bottom 32-bit results:

MUL Multiplies the values of two registers together, truncates the result to 32 bits,

 and stores the result in a third register.

MLA Multiplies the values of two registers together, adds the value of a third

 register, truncates the result to 32 bits, and stores the result in a fourth register.

 This can be used to perform multiply-accumulate operations.

Both Normal Multiply instructions can optionally set the N (Negative) and Z (Zero) condition code

flags. No distinction is made between signed and unsigned variants. Only the least significant 32 bits

of the result are stored in the destination register, and the sign of the operands does not affect this

value.

SMMUL Multiplies the 32-bit values of two registers together, and stores the top 32 bits

 of the signed 64-bit result in a third register.

SMMLA Multiplies the 32-bit values of two registers together, extracts the top 32 bits,

 adds the 32-bit value from a third register, and stores the signed 32-bit result in a

fourth register.

SMMLS Multiplies the 32-bit value of two registers together, extracts the top 32 bits,

 subtracts this from a 32-bit value from a third register, and stores the signed 32-

bit result in a fourth register.

Examples

MUL R4, R2, R1 ; Set R4 to value of R2 multiplied by R1

MULS R4, R2, R1 ; R4 = R2 x R1, set N and Z flags

MLA R7, R8, R9, R3 ; R7 = R8 x R9 + R3

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:13
 Email id: sujeetkumarnayak.in@gmail.com

SMULL R4, R8, R2, R3 ; R4 = bits 0 to 31 of R2 x R3 ; R8 = bits 32 to 63 of R2 x R3

UMULL R6, R8, R0, R1 ; R8, R6 = R0 x R1

UMLAL R5, R8, R0, R1 ; R8, R5 = R0 x R1 + R8, R5

Load and store instructions

The ARM architecture supports two broad types of instruction which load or store the value of a

single register, or a pair of registers, from or to memory:

• The first type can load or store a 32-bit word or an 8-bit unsigned byte.

• The second type can load or store a 16-bit unsigned halfword, and can load and sign extend a 16-bit

halfword or an 8-bit byte. In ARMv5TE and above, it can also load or store a pair of 32-bit words.

Load and Store Multiple instructions

Load Multiple instructions load a subset, or possibly all, of the general-purpose registers from

memory.

Store Multiple instructions store a subset, or possibly all, of the general-purpose registers to memory.

Load and Store Multiple instructions have a single instruction format:

LDM{<cond>}<addressing_mode> Rn{!}, <registers>{^}

STM{<cond>}<addressing_mode> Rn{!}, <registers>{^}

where: <addressing_mode> = IA | IB | DA | DB | FD | FA | ED | EA

simple

 Branch or Branch with Link instruction:

_ B{condition} <address>

_ BL{condition} <address>

_ Bits [27:25] identify this as a B or BL instruction – they have values 101

 only for these instructions

Conditional execution in ARM state

To execute ARM instructions conditionally you can either append a two letter suffix to the

mnemonic, or you can use a conditional branch instruction. Almost all ARM instructions can be

executed conditionally on the value of the condition flags in the APSR. You can either add a

condition code suffix to the instruction or you can conditionally skip over the instruction using a

conditional branch instruction. Using conditional branch instructions to control the flow of execution

can be more efficient when a series of instructions depend on the same condition.

Example conditional instructions to control execution

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:14
 Email id: sujeetkumarnayak.in@gmail.com

 LSLEQ r0, r0, #24

 ADDEQ r0, r0, #2

 ;…

Example conditional branch to control execution

 BNE over

 LSL r0, r0, #24

 ADD r0, r0, #2

over

 ;…

The Thumb instruction set consists of 16-bit instructions that act as a compact shorthand for a

subset of the 32-bit instructions of the standard ARM. Every Thumb instruction could instead be

executed via the equivalent 32-bit ARM instruction. However, not all ARM instructions are available

in the Thumb subset; for example, there's no way to access status or coprocessor registers. Also,

some functions that can be accomplished in a single ARM instruction can only be simulated with a

sequence of Thumb instructions. The Thumb instruction set provides most of the functionality

required in a typical application. Arithmetic and logical operations, load/store data movements, and

conditional and unconditional branches are supported. Based upon the available instruction set, any

code written in C could be executed successfully in Thumb state. However, device drivers and

exception handlers must often be written at least partly in ARM state.

they are identical to regular ARM instructions but generally have limitations, including that they:

Access only the bottom eight registers

Reuse a register as both a source and destination

Support shorter immediates

Lack conditional execution

Always write the status flags

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:15
 Email id: sujeetkumarnayak.in@gmail.com

FPGA

The full form of FPGA is “Field Programmable Gate Array”. It contains ten thousand to more

than a million logic gates with programmable interconnection. Programmable interconnections are

available for users or designers to perform given functions easily. A typical model FPGA chip is

shown in the given figure. There are I/O blocks, which are designed and numbered according to

function. For each module of logic level composition, there are CLB’s (Configurable Logic

Blocks).

CLB performs the logic operation given to the module. The inter connection between CLB and I/O

blocks are made with the help of horizontal routing channels, vertical routing channels and PSM

(Programmable Multiplexers).

The number of CLB it contains only decides the complexity of FPGA. The functionality of CLB’s

and PSM are designed by VHDL or any other hardware descriptive language. After programming,

CLB and PSM are placed on chip and connected with each other with routing channels.

Advantages

 It requires very small time; starting from design process to functional chip.

 No physical manufacturing steps are involved in it.

 The only disadvantage is, it is costly than other styles.

FPGA Architecture

FPGAs are prefabricated silicon chips that can be programmed electrically to implement digital

designs. The first static memory based FPGA called SRAM is used for configuring both logic and

interconnection using a stream of configuration bits. Today’s modern EPGA contains approximately

3,30,000 logic blocks and around 1,100 inputs and outputs.

The FPGA Architecture consists of three major components

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:16
 Email id: sujeetkumarnayak.in@gmail.com

• Programmable Logic Blocks, which implement logic functions

• Programmable Routing (interconnects), which implements functions

• I/O blocks, which are used to make off-chip connections

Programmable Logic Blocks

The programmable logic block provides basic computation and storage elements used in digital

systems. A basic logic element consists of programmable combinational logic, a flip-flop, and some

fast carry logic to reduce area and delay cost.

Programmable Routing

The programmable routing establishes a connection between logic blocks and Input/Output blocks to

complete a user-defined design unit.

It consists of multiplexers pass transistors and tri-state buffers. Pass transistors and multiplexers are

used in a logic cluster to connect the logic elements.

Programmable I/O

The programmable I/O pads are used to interface the logic blocks and routing architecture to the

external components. The I/O pad and the surrounding logic circuit form as an I/O cell.

These cells consume a large portion of the FPGA’s area. And the design of I/O programmable blocks

is complex, as there are great differences in the supply voltage and reference voltage.

The selection of standards is important in I/O architecture design. Supporting a large number of

standards can increase the silicon chip area required for I/O cells.

With advancement, the basic FPGA Architecture has developed through the addition of more

specialized programmable function blocks.

The special functional blocks like ALUs, block RAM, multiplexers, DSP-48, and microprocessors

have been added to the FPGA, due to the frequency of the need for such resources for applications.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:17
 Email id: sujeetkumarnayak.in@gmail.com

 MODULE-2

 Device And Device Drivers :

A device driver is a program that controls a particular type of device that is attached

to your computer. There are device drivers for printers, displays, CD-ROM readers,

diskette drives, and so on.

A driver provides a software interface to hardware devices, enabling operating

systems and other computer programs to access hardware functions without

needing to know precise details of the hardware being used.

A driver typically communicates with the device through the computer bus or

communications subsystem to which the hardware connects. When a calling

program invokes a routine in the driver, the driver issues commands to the device.

Once the device sends data back to the driver, the driver may invoke routines in the

original calling program. Drivers are hardware-dependent and operating-system-

specific. They usually provide the interrupt handling required for any necessary

asynchronous time-dependent hardware interface.

Purpose of a Device Driver

The purpose of a device driver is to handle requests made by the kernel with regard

to a particular type of device. There is a well-defined and consistent interface for the

kernel to make these requests. By isolating device-specific code in device drivers

and by having a consistent interface to the kernel, adding a new device is easier.

Types of Device Drivers

A device driver is a software module that resides within the kernel and is the

software interface to a hardware device or devices. A hardware device is a

peripheral, such as a disk controller, tape controller, or network controller device.

In general, there is one device driver for each type of hardware device. Device

drivers can be classified as:

• Block device drivers

• Character device drivers (including terminal drivers)

• Network device drivers

A device driver is a program that controls a particular type of device that is attached

to your computer. There are device drivers for printers, displays, CD-ROM readers,

diskette drives, and so on.

A driver provides a software interface to hardware devices, enabling operating

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:18
 Email id: sujeetkumarnayak.in@gmail.com

systems and other computer programs to access hardware functions without

needing to know precise details of the hardware being used.

A driver typically communicates with the device through the computer bus or

communications subsystem to which the hardware connects. When a calling

program invokes a routine in the driver, the driver issues commands to the device.

Once the device sends data back to the driver, the driver may invoke routines in the

original calling program. Drivers are hardware-dependent and operating-system-

specific. They usually provide the interrupt handling required for any necessary

asynchronous time-dependent hardware interface.

Purpose of a Device Driver

The purpose of a device driver is to handle requests made by the kernel with regard

to a particular type of device. There is a well-defined and consistent interface for the

kernel to make these requests. By isolating device-specific code in device drivers

and by having a consistent interface to the kernel, adding a new device is easier.

Types of Device Drivers

A device driver is a software module that resides within the kernel and is the

software interface to a hardware device or devices. A hardware device is a

peripheral, such as a disk controller, tape controller, or network controller device.

In general, there is one device driver for each type of hardware device. Device

drivers can be classified as:

• Block device drivers

• Character device drivers (including terminal drivers)

• Network device drivers

Most embedded hardware requires some type of software initialization and management. The

software that directly interfaces with and controls this hardware is called a device driver. All

embedded systems that require software have, at the very least, device driver software in their system

software layer. Device drivers are the software libraries that initialize the hardware and manage

access to the hardware by higher layers of software.

Device drivers are the liaison between the hardware and the operating system, middleware, and

application layers. Different types of hardware will have different device driver requirements that

need to be met.

Even the same type of hardware, such as Flash memory, that are created by different manufacturers

can require substantially different device driver software libraries to support within the embedded

device.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:19
 Email id: sujeetkumarnayak.in@gmail.com

 Embedded Systems Model and Device Drivers.

Embedded System Board Organization.[1]. Based upon the von Neumann architecture model

(also referred to as the Princeton architecture).

Specifically, this can include drivers for the master processor architecture-specific functionality,

memory and memory management drivers, bus initialization and transaction drivers, and I/O

(input/output) initialization and control drivers (such as for networking, graphics, input devices,

storage devices, or debugging I/O) both at the board and master CPU level.

Device drivers are typically considered either architecture-specific or generic. A device driver that is

architecture-specific manages the hardware that is integrated into the master processor (the

architecture). Examples of architecture-specific drivers that initialize and enable components within a

master processor include on-chip memory, integrated memory managers (memory management units

(MMUs)), and floating-point hardware. A device driver that is generic manages hardware that is

located on the board and not integrated onto the master processor. In a generic driver, there are

typically architecture-specific portions of source code, because the master processor is the central

control unit and to gain access to anything on the board usually means going through the master

processor. However, the generic driver also manages board hardware that is not specific to that

particular processor, which means that a generic driver can be configured to run on a variety of

architectures that contain the related board hardware for which the driver is written. Generic drivers

include code that initializes and manages access to the remaining major components of the board,

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:20
 Email id: sujeetkumarnayak.in@gmail.com

including board buses (I2C, PCI, PCMCIA, etc.), off-chip memory (controllers, level 2+ cache,

Flash, etc.), and off-chip I/O (Ethernet, RS-232, display, mouse, etc.).

 MPC860 Hardware Block Diagram. Freescale Semiconductor, Inc. Used by permission.

. MPC860

Architecture-Specific Device Driver System Stack. © Freescale Semiconductor, Inc. Used by

permission.

Figure shows a hardware block diagram of an MPC860-based board and shows a systems diagram

that includes examples of MPC860 processor-specific device drivers, as well as generic device

drivers.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:21
 Email id: sujeetkumarnayak.in@gmail.com

Regardless of the type of device driver or the hardware it manages, all device drivers are generally

made up of all or some combination of the following functions:

Hardware Startup: initialization of the hardware upon PowerON or reset.

Hardware Shutdown: configuring hardware into its PowerOFF state.

Hardware Disable: allowing other software to disable hardware on-the-fly.

Hardware Enable: allowing other software to enable hardware on-the-fly.

Hardware Acquire: allowing other software to gain singular (locking) access to hardware.

Hardware Release: allowing other software to free (unlock) hardware.

Hardware Read: allowing other software to read data from hardware.

Hardware Write: allowing other software to write data to hardware.

Hardware Install: allowing other software to install new hardware on-the-fly.

Hardware Uninstall: allowing other software to remove installed hardware on-the-fly.

Hardware Mapping: allowing for address mapping to and from hardware storage devices when

reading, writing, and/or deleting data.

Hardware Un mapping: allowing for un mapping (removing) blocks of data from hardware storage

devices.

Of course, device drivers may have additional functions, but some or all of the functions shown

above are what device drivers inherently have in common. These functions are based upon the

software’s implicit perception of hardware, which is that hardware is in one of three states at any

given time—inactive, busy, or finished. Hardware in the inactive state is interpreted as being either

disconnected (thus the need for an install function), without power (hence the need for an

initialization routine), or disabled (thus the need for an enable routine). The busy and finished states

are active hardware states, as opposed to inactive; thus the need for uninstall, shutdown, and/or

disable functionality. Hardware that is in a busy state is actively processing some type of data and is

not idle, and thus may require some type of release mechanism. Hardware that is in the finished state

is in an idle state, which then allows for acquisition, read, or write requests,

 for example. Again, device drivers may have all or some of these functions, and can integrate some

of these functions into single larger functions. Each of these driver functions typically has code that

interfaces directly to the hardware and code that interfaces to higher layers of software. In some

cases, the distinction between these layers is clear, while in other drivers, the code is tightly

integrated

On a final note, depending on the master processor, different types of software can execute in

different modes, the most common being supervisory and user modes. These modes essentially differ

in terms of what system components the software is allowed access to, with software running in

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:22
 Email id: sujeetkumarnayak.in@gmail.com

supervisory mode having more access (privileges) than software running in user mode. Device driver

code typically runs in supervisory mode.

 Driver Code Layers. I/O Devices :

Input and output devices allow the computer system to interact with the outside world by moving

data into and out of the system. An input device is used to bring data into the system. Some input

devices are:

Keyboard

Mouse

Microphone

Bar code reader

Graphics tablet

An output device is used to send data out of the system. Some output devices are:

Monitor

Printer

Speaker

Input/output devices are usually called I/O devices. They are directly connected to an electronic

module inside the systems unit called a device controller. For example, the speakers of a multimedia

computer system are directly connected to a device controller called an audio card (such as a Sound

blaster), which in turn is connected to the rest of the system.

Sometimes secondary memory devices like the hard disk are called I/O devices (because they move

data in and out of main memory.) What counts as an I/O device depends on context. To a user, an I/O

device is something outside of the system box. To a programmer, everything outside of the processor

and main memory looks like an I/O devices. To an engineer working on the design of a processor,

everything outside of the processor is an I/O device.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:23
 Email id: sujeetkumarnayak.in@gmail.com

A computer that is dedicated to running a program that controls another device is an embedded

system. An embedded system is usually embedded inside the device it controls. Usually they run just

one program that is permanently kept in a special kind of main memory called ROM (for Read Only

Memory). More processor chips are sold per year for embedded systems than for all other purposes.

Serial Peripheral interface :

The Serial Peripheral Interface (SPI) is a synchronous serial communication interface specification

used for short-distance communication, primarily in embedded systems. The interface was developed

by Motorola in the mid-1980s and has become a de facto standard. Typical applications

include Secure Digital cards and liquid crystal displays.

SPI devices communicate in full duplex mode using a master-slave architecture with a single master.

The master device originates the frame for reading and writing. Multiple slave-devices are supported

through selection with individual slave select (SS), sometimes called chip select (CS), lines.

The SPI bus specifies four logic signals:

SCLK: Serial Clock (output from master)

MOSI: Master Output Slave Input, or Master Out Slave In (data output from master)

MISO: Master Input Slave Output, or Master In Slave Out (data output from slave)

SS: Slave Select (often active low, output from master)

While the above pin names are the most popular, in the past alternative pin-naming conventions were

sometimes used, and so SPI port pin-names for older IC products may differ from those depicted in

these illustrations:

Serial Clock:

SCLK: SCK

Master Output → Slave Input (MOSI):

SIMO, MTSR - correspond to MOSI on both master and slave devices, connects to each other

SDI, DI, DIN, SI - on slave devices; connects to MOSI on master, or to below connections

SDO, DO, DOUT, SO - on master devices; connects to MOSI on slave, or to above connections

Master Input ← Slave Output (MISO):

SOMI, MRST - correspond to MISO on both master and slave devices, connects to each other

SDO, DO, DOUT, SO - on slave devices; connects to MISO on master, or to below connections

SDI, DI, DIN, SI - on master devices; connects to MISO on slave, or to above connections

Slave Select:

SS: S̅S̅, SSEL, CS, C̅S̅, CE, nSS, /SS, SS#

In other words, MOSI (or SDO on a master) connects to MOSI (or SDI on a slave). MISO (or SDI on

a master) connects to MISO (or SDO on a slave). Slave Select is the same functionality as chip

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:24
 Email id: sujeetkumarnayak.in@gmail.com

select and is used instead of an addressing concept. Pin names are always capitalized as in Slave

Select, Serial Clock, and Master Output Slave Input.

IIC :

I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a synchronous, multi-master, multi-

slave, packet switched, single-ended, serial computer bus invented in 1982 by Philips

Semiconductor (now NXP Semiconductors). It is widely used for attaching lower-speed

peripheral ICs to processors and microcontrollers in short-distance, intra-board communication.

Alternatively, I²C is spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).

I²C is appropriate for peripherals where simplicity and low manufacturing cost are more important

than speed. Common applications of the I²C bus are:

Describing connectable devices via small ROM configuration tables to enable "plug and play"

operation, such as Serial Presence Detect (SPD) EEPROMs on dual in-line memory

modules (DIMMs), and Extended Display Identification Data (EDID) for monitors

via VGA, DVI and HDMI connectors. System management for PC systems via SMBus;

SMBus pins are allocated in both Conventional PCI and PCI Express connectors.

Accessing real-time clocks and NVRAM chips that keep user settings.

Accessing low-speed DACs and ADCs.

Changing contrast, hue, and color balance settings in monitors (via Display Data Channel).

Changing sound volume in intelligent speakers.

Controlling small (e.g. feature phone) OLED or LCD displays.

Reading hardware monitors and diagnostic sensors, e.g. a fan's speed.

Turning on and turning off the power supply of system components.[4]

A particular strength of I²C is the capability of a microcontroller to control a network of device chips

with just two general-purpose I/O pins and software. Many other bus technologies used in similar

applications, such as Serial Peripheral Interface Bus (SPI), require more pins and signals to connect

multiple devices.

RS 232C :

RS-232C is the interface that your computer uses to talk to and exchange data with your modem and

other serial devices. RS-232C is the interface between your Communication networks and other

communication networks.

Somewhere in your PC, typically on a Universal Asynchronous Receiver/Transmitter (UART) chip

on your motherboard, the data from your computer is transmitted to an internal or external modem

(or other serial device) from its Data Terminal Equipment (DTE) interface. Since data in your

computer flows along parallel circuits and serial devices can handle only one bit at a time, the UART

chip converts the groups of bits in parallel to a serial stream of bits.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:25
 Email id: sujeetkumarnayak.in@gmail.com

As your PC's DTE agent, it also communicates with the modem or other serial device, which, in

accordance with the RS-232C standard, has a complementary interface called the Data

Communications Equipment (DCE) interface. RTS/CTS is the way the DTE indicates that it is ready

to transmit data and the way the DCW indicates that it is ready to accept data

RS232C, a standard interface approved by the Electronic Industries Alliance (EIA) for connecting

serial devices. In 1987, the EIA released a new version of the standard and changed the name to EIA-

232-D. And in 1991, the EIA teamed up with Telecommunications Industry association (TIA) and

issued a new version of the standard called EIA/TIA-232-E. Many people, however, still refer to the

standard as RS-232C, or just RS-232.

Almost all modems conform to the EIA-232 standard and most personal computers have an EIA-232

port for connecting a modem or other device. In addition to modems, many display screens, mice,

and serial printers are designed to connect to a EIA-232 port. In EIA-232 parlance, the device that

connects to the interface is called a Data Communications Equipment (DCE) and the device to which

it connects (e.g., the computer) is called a Data Terminal Equipment (DTE).

The essential feature ofRS-232 is that the signals are carried as single voltages referred to a common

ground on pin 7. In its simplest form, the RS-232:C interface consis;9'of only two wires for data and

ground. The ground is the absolute voltage reference for all the interface circuitry, the point in the

circuit from which all voltages are measured. Data on pin 2 of the DTE is transmitted, while the same

data on pin 2 of a DCE (modem) is received data as shown in Figure.

Data is transmitted and received on pins 2 and 3, respectively. Data Set Ready (DSR) is an indication

from the Data set (the modem or DSU/CSU) that it is on. Similarly, DTR indicates that the DTE is

on. Carrier Detect (CD) indicates that carrier for the transmission data is on.

Pins 4 and 5 carry the Request to Send (RTS) and Clear to Send (CTS) signals. In most situations,

RTS and CTS are constantly on the communication session. However, where the DTE is connected

to a multipoint line, RTS is used to turn the carrier on the modem on and off. On a multipoint line, it

is imperative that only one station is transmitting at a time. When a station wants to transmit, it raises

RTS. The modem turns on carrier, typically waits a few milliseconds for carrier to stabilize, and

raises CTS.

The DTE transmits when it sees CTS up. When the station has finished its transmission, it drops RTS

and the modem drops CTS and carrier together.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:26
 Email id: sujeetkumarnayak.in@gmail.com

RS 422 :

RS-422, also known as TIA/EIA-422, is a technical standard originated by the Electronic Industries

Alliance that specifies electrical characteristics of a digital signaling circuit. It was intended to

replace the older RS-232C standard with a standard that offered much higher speed, better immunity

from noise, and longer cable lengths. RS-422 systems can transmit data at rates as high as 10 Mbit/s,

or may be sent on cables as long as 1,500 meters at lower rates. It is closely related to RS-423, which

used the same signaling systems but on a different wiring arrangement.

RS-422 specifies differential signaling, with every data line paired with a dedicated return line. It is

the voltage difference between these two lines that define the mark and space, rather than, as in RS-

232, the difference in voltage between a data line and a local ground. As the ground voltage can

differ at either end of the cable, this required RS-232 to use large +5 and -5 voltages. Moving to

dedicated return lines and always defining ground in reference to the sender allowed RS-422 to use

0.4 V, allowing it to run at much higher speeds. RS-423 differed primarily in that it had a single

return pin instead of one for each data pin.

RS-422 and RS-423 had originally planned to use the same DB25 connector as RS-232, but over time

the number of required pins grew and the standards split out the definition into the RS-449 effort.

This produced an unwieldy system and later returned to DB25 in the RS-530 standard.

RS 485 :

RS-485, also known as TIA-485(-A) or EIA-485, is a standard defining the electrical characteristics

of drivers and receivers for use in serial communications systems. Electrical signaling is balanced,

and multipoint systems are supported. The standard is jointly published by the Telecommunications

Industry Association and Electronic Industries Alliance (TIA/EIA). Digital communications

networks implementing the standard can be used effectively over long distances and in electrically

noisy environments. Multiple receivers may be connected to such a network in a linear, multidrop

bus. These characteristics make RS-485 useful in industrial control systems and similar applications.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:27
 Email id: sujeetkumarnayak.in@gmail.com

RS-485 supports inexpensive local networks and multidrop communications links, using the

same differential signaling over twisted pair as RS-422. It is generally accepted that RS-485 can be

used with data rates up to 10 Mbit/s[a] or, at lower speeds, distances up to 1,200 m (4,000 ft).[2] As

a rule of thumb, the speed in bit/s multiplied by the length in metres should not exceed 108. Thus

a 50-meter cable should not signal faster than 2 Mbit/s.

In contrast to RS-422, which has a driver circuit which cannot be switched off, RS-485 drivers

use three-state logic allowing individual transmitters to be deactivated. This allows RS-485 to

implement linear bus topologies using only two wires. The equipment located along a set of RS-485

wires are interchangeably called nodes, stations or devices. The recommended arrangement of the

wires is as a connected series of point-to-point (multi dropped) nodes, i.e. a line or bus, not

a star, ring, or multiply connected network. Star and ring topologies are not recommended because of

signal reflections or excessively low or high termination impedance. If a star configuration is

unavoidable, special RS-485 repeaters are available which bi directionally listen for data on each

span and then retransmit the data onto all other spans.

Ideally, the two ends of the cable will have a termination resistor connected across the two wires.

Without termination resistors, signal reflections off the un terminated end of the cable can cause data

corruption. Termination resistors also reduce electrical noise sensitivity due to the lower

impedance,The value of each termination resistor should be equal to the cable characteristic

impedance (typically, 120 ohms for twisted pairs). The termination also includes pull up and pull

down resistors to establish fail-safe bias for each data wire for the case when the lines are not being

driven by any device. This way, the lines will be biased to known voltages and nodes will not

interpret the noise from un driven lines as actual data; without biasing resistors, the data lines float in

such a way that electrical noise sensitivity is greatest when all device stations are silent or

unpowered.

Universal Serial Bus :

A Universal Serial Bus (USB) is basically a newer port that is used as a common interface to connect

several different types of devices such as keyboards, printers, media devices, cameras, scanners, and

mice. It is designed for easy installation, faster transfer rates, higher quality cabling and hot

swapping. It has conclusively replaced the bulkier and slower serial and parallel ports.

One of the greatest features of the USB is hot swapping. This feature allows a device to be removed

or replaced without the past prerequisite of rebooting and interrupting the system. Older ports

required that a PC be restarted when adding or removing a new device. Rebooting allowed the device

to be reconfigured and prevented electrostatic discharge (ESD), an unwanted electrical current

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:28
 Email id: sujeetkumarnayak.in@gmail.com

capable of causing serious damage to sensitive electronic equipment such as integrated circuits. Hot

swapping is fault tolerant, i.e. able to continue operating despite a hardware failure. However, care

should be taken when hot swapping certain devices such as a camera; damage can occur to the port,

camera or other devices if a single pin is accidently shorted.

Another USB feature is the use of direct current (DC). In fact, several devises use a USB power line

to connect to DC current and do not transfer data. Example devices using a USB connector only for

DC current include a set of speakers, an audio jack and power devices like a miniature refrigerator,

coffee cup warmer or keyboard lamp.

USB Version 1 allowed for two speeds: 1.5 Mb/s (megabits per second) and 12 Mb/s, which work

well for slow I/O devices. USB Version 2 allows up to 480 Mb/s and is backward compatible with

slower USB devices. USB supports three.

IrDa :

Short for Infrared Data Association, a group of device manufacturers that developed a standard for

transmitting data via infrared light waves. Increasingly, computers and other devices (such

as printers) come with IrDA ports. This enables you to transfer data from one device to another

without any cables. For example, if both your laptop computer and printer have IrDA ports, you can

simply put your computer in front of the printer and output a document, without needing to connect

the two with a cable.

IrDA ports support roughly the same transmission rates as traditional parallel ports. The only

restrictions on their use is that the two devices must be within a few feet of each other and there must

be a clear line of sight between them.

CAN Bus :

A Controller Area Network (CAN bus) is a robust vehicle bus standard designed to

allow microcontrollers and devices to communicate with each other's applications without a host

computer. It is a message-based protocol, designed originally for multiplex electrical wiring within

automobiles to save on copper, but can also be used in many other contexts. For each device the data

in a frame is transmitted sequentially but in such a way that if more than one device transmits at the

same time the highest priority device is able to continue while the others back off. Frames are

received by all devices, including by the transmitting device.

Development of the CAN bus started in 1983 at Robert Bosch GmbH. The protocol was officially

released in 1986 at the Society of Automotive Engineers (SAE) conference in Detroit, Michigan. The

first CAN controller chips were introduced by Intel in 1987, and shortly thereafter

by Philips. Released in 1991, the Mercedes-Benz W140 was the first production vehicle to feature a

CAN-based multiplex wiring system.[2][3]

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:29
 Email id: sujeetkumarnayak.in@gmail.com

Bosch published several versions of the CAN specification and the latest is CAN 2.0 published in

1991. This specification has two parts; part A is for the standard format with an 11-bit identifier, and

part B is for the extended format with a 29-bit identifier. A CAN device that uses 11-bit identifiers is

commonly called CAN 2.0A and a CAN device that uses 29-bit identifiers is commonly called CAN

2.0B.

In 1993, the International Organization for Standardization (ISO) released the CAN standard ISO

11898 which was later restructured into two parts; ISO 11898-1 which covers the data link layer, and

ISO 11898-2 which covers the CAN physical layer for high-speed CAN. ISO 11898-3 was released

later and covers the CAN physical layer for low-speed, fault-tolerant CAN. The physical layer

standards ISO 11898-2 and ISO 11898-3 are not part of the Bosch CAN 2.0 specification. These

standards may be purchased from the ISO.

Bosch is still active in extending the CAN standards. In 2012, Bosch released CAN FD 1.0 or CAN

with Flexible Data-Rate. This specification uses a different frame format that allows a different data

length as well as optionally switching to a faster bit rate after the arbitration is decided. CAN FD is

compatible with existing CAN 2.0 networks so new CAN FD devices can coexist on the same

network with existing CAN devices.[5]

CAN bus is one of five protocols used in the on-board diagnostics (OBD)-II vehicle diagnostics

standard. The OBD-II standard has been mandatory for all cars and light trucks sold in the United

States since 1996. The EOBD standard has been mandatory for all petrol vehicles sold in the

European Union since 2001 and all diesel vehicles since 2004.

Bluetooth :

Bluetooth is a wireless technology standard used for exchanging data between fixed and mobile

devices over short distances using short-wavelength UHF radio waves in the industrial, scientific and

medical radio bands, from 2.400 to 2.485 GHz, and building personal area networks (PANs). It was

originally conceived as a wireless alternative to RS-232 data cables.

Bluetooth is managed by the Bluetooth Special Interest Group (SIG), which has more than 35,000

member companies in the areas of telecommunication, computing, networking, and consumer

electronics. The IEEE standardized Bluetooth as IEEE 802.15.1, but no longer maintains the

standard. The Bluetooth SIG oversees development of the specification, manages the qualification

program, and protects the trademarks. A manufacturer must meet Bluetooth SIG standards to market

it as a Bluetooth device.[4] A network of patents apply to the technology, which are licensed to

individual qualifying devices. As of 2009, Bluetooth integrated circuit chips ship approximately

920 million units annually.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:30
 Email id: sujeetkumarnayak.in@gmail.com

Real Time Operating System :

A real-time operating system (RTOS) is an operating system (OS) intended to serve real-

time applications that process data as it comes in, typically without buffer delays. Processing time

requirements (including any OS delay) are measured in tenths of seconds or shorter increments of

time. A real-time system is a time-bound system which has well-defined, fixed time constraints.

Processing must be done within the defined constraints or the system will fail. They either are event-

driven or time-sharing. Event-driven systems switch between tasks based on their priorities, while

time-sharing systems switch the task based on clock interrupts. Most RTOSs use a pre-

emptive scheduling algorithm.

A key characteristic of an RTOS is the level of its consistency concerning the amount of time it takes

to accept and complete an application's task; the variability is 'jitter'.[1] A 'hard' real-time operating

system has less jitter than a 'soft' real-time operating system. The chief design goal is not

high throughput, but rather a guarantee of a soft or hard performance category. An RTOS that can

usually or generally meet a deadline is a soft real-time OS, but if it can meet a

deadline deterministically it is a hard real-time OS.

An RTOS has an advanced algorithm for scheduling. Scheduler flexibility enables a wider, computer-

system orchestration of process priorities, but a real-time OS is more frequently dedicated to a

narrow set of applications. Key factors in a real-time OS are minimal interrupt latency and

minimal thread switching latency; a real-time OS is valued more for how quickly or how predictably

it can respond than for the amount of work it can perform in a given period of time.

a task has three states:

Running (executing on the CPU);

Ready (ready to be executed);

Blocked (waiting for an event, I/O for example).

Most tasks are blocked or ready most of the time because generally only one task can run at a time

per CPU. The number of items in the ready queue can vary greatly, depending on the number of tasks

the system needs to perform and the type of scheduler that the system uses. On simpler non-

preemptive but still multitasking systems, a task has to give up its time on the CPU to other tasks,

which can cause the ready queue to have a greater number of overall tasks in the ready to be executed

state (resource starvation).

Usually the data structure of the ready list in the scheduler is designed to minimize the worst-case

length of time spent in the scheduler's critical section, during which preemption is inhibited, and, in

some cases, all interrupts are disabled, but the choice of data structure depends also on the maximum

number of tasks that can be on the ready list.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:31
 Email id: sujeetkumarnayak.in@gmail.com

If there are never more than a few tasks on the ready list, then a doubly linked list of ready tasks is

likely optimal. If the ready list usually contains only a few tasks but occasionally contains more, then

the list should be sorted by priority. That way, finding the highest priority task to run does not require

iterating through the entire list. Inserting a task then requires walking the ready list until reaching

either the end of the list, or a task of lower priority than that of the task being inserted.

Care must be taken not to inhibit preemption during this search. Longer critical sections should be

divided into small pieces. If an interrupt occurs that makes a high priority task ready during the

insertion of a low priority task, that high priority task can be inserted and run immediately before the

low priority task is inserted.

The critical response time, sometimes called the flyback time, is the time it takes to queue a new

ready task and restore the state of the highest priority task to running. In a well-designed RTOS,

readying a new task will take 3 to 20 instructions per ready-queue entry, and restoration of the

highest-priority ready task will take 5 to 30 instructions.

In more advanced systems, real-time tasks share computing resources with many non-real-time tasks,

and the ready list can be arbitrarily long. In such systems, a scheduler ready list implemented as a

linked list would be inadequate.

Hard real-time software systems have a set of strict deadlines, and missing a deadline is considered a

system failure. Examples of hard real-time systems: airplane sensor and autopilot systems,

spacecrafts and planetary rovers.

Soft real-time systems try to reach deadlines but do not fail if a deadline is missed. However, they

may degrade their quality of service in such an event to improve responsiveness. Examples of soft

real-time systems: audio and video delivery software for entertainment (lag is undesirable but not

catastrophic).

Firm real-time systems treat information delivered/computations made after a deadline as invalid.

Like soft real-time systems, they do not fail after a missed deadline, and they may degrade QoS if a

deadline is missed (1). Examples of firm real-time systems: financial forecast systems, robotic

assembly lines .

Task Periodicity :

The system is subjected to real time, i.e. response should be guaranteed within a specified timing

constraint or system should meet the specified deadline. For example flight control system, real-time

monitors etc.

There are two types of tasks in real-time systems:

Periodic tasks

Dynamic tasks

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

Periodic Tasks: In periodic task, jobs are released at regular intervals. A periodic task is one which

repeats itself after a fixed time interval.

A periodic task is denoted by five tuples:

Where,

Φi – is the phase of the task. Phase is release time of the first job in the task. If the phase is not

mentioned then release time of first job is assumed to be zero.

Pi – is the period of the task i.e. the time interval betwe

ei – is the execution time of the task.

Di – is the relative deadline of the task.

For example: Consider the task Ti with period = 5 and execution time = 3

Phase is not given so, assume the release time of the

released at t = 0 then it executes for 3s and then next job is released at t = 5 which executes for 3s and

then next job is released at t = 10. So jobs are released at t = 5k where k = 0, 1, . . ., n

Hyper period of a set of periodic tasks is the least common multiple of periods of all the tasks in that

set. For example, two tasks T1 and T2

= lcm(p1, p2) = lcm(4, 5) = 20. The hyper period i

starts to repeat.

Dynamic Tasks: It is a sequential program that is invoked by the occurrence of an event. An event

may be generated by the processes external to the system or by processes internal to the

Dynamically arriving tasks can be categorized on their criticality and knowledge about their

occurrence times.

Aperiodic Tasks: In this type of task, jobs are released at arbitrary time intervals i.e. randomly.

Aperiodic tasks have soft deadlines or no deadlines.

Sporadic Tasks: They are similar to aperiodic tasks i.e. they repeat at random instances. The only

difference is that sporadic tasks have hard deadlines. A spo

tuples: Ti =(ei, gi, Di)

Where

ei – the execution time of the task.

 EMBEDDED SYSTEM PAGE NO:

In periodic task, jobs are released at regular intervals. A periodic task is one which

repeats itself after a fixed time interval.

A periodic task is denoted by five tuples: Ti = < Φi, Pi, ei, Di >

is the phase of the task. Phase is release time of the first job in the task. If the phase is not

mentioned then release time of first job is assumed to be zero.

is the period of the task i.e. the time interval between the release times of two consecutive jobs.

is the relative deadline of the task.

with period = 5 and execution time = 3

Phase is not given so, assume the release time of the first job as zero. So the job of this task is first

released at t = 0 then it executes for 3s and then next job is released at t = 5 which executes for 3s and

then next job is released at t = 10. So jobs are released at t = 5k where k = 0, 1, . . ., n

Hyper period of a set of periodic tasks is the least common multiple of periods of all the tasks in that

 having period 4 and 5 respectively will have a hyper period, H

= lcm(p1, p2) = lcm(4, 5) = 20. The hyper period is the time after which pattern of job release times

is a sequential program that is invoked by the occurrence of an event. An event

may be generated by the processes external to the system or by processes internal to the

Dynamically arriving tasks can be categorized on their criticality and knowledge about their

In this type of task, jobs are released at arbitrary time intervals i.e. randomly.

or no deadlines.

They are similar to aperiodic tasks i.e. they repeat at random instances. The only

tasks have hard deadlines. A sporadic task is denoted by three

PAGE NO:32

In periodic task, jobs are released at regular intervals. A periodic task is one which

is the phase of the task. Phase is release time of the first job in the task. If the phase is not

en the release times of two consecutive jobs.

first job as zero. So the job of this task is first

released at t = 0 then it executes for 3s and then next job is released at t = 5 which executes for 3s and

Hyper period of a set of periodic tasks is the least common multiple of periods of all the tasks in that

having period 4 and 5 respectively will have a hyper period, H

s the time after which pattern of job release times

is a sequential program that is invoked by the occurrence of an event. An event

may be generated by the processes external to the system or by processes internal to the system.

Dynamically arriving tasks can be categorized on their criticality and knowledge about their

In this type of task, jobs are released at arbitrary time intervals i.e. randomly.

They are similar to aperiodic tasks i.e. they repeat at random instances. The only

dic task is denoted by three

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

gi – the minimum separation between the occurrence of two consecutive instances of the task.

Di – the relative deadline of the task.

Jitter: Sometimes actual release time of a job is not known. Only know that r

 [ri-, ri+]. This range is known as release time jitter. Here r

ri+ is how late a job can be released. Only range [e

Here ei– is the minimum amount of time required by a job

maximum amount of time required by a job to complete its execution.

Precedence Constraint of Jobs: Jobs in a task are independent if they can be executed in any order.

If there is a specific order in which jobs in a t

precedence constraints. For representing precedence constraints of jobs a partial order relation < is

used. This is called precedence relation. A job J

its execution until Ji completes. Ji is an immediate predecessor of J

Jk such that Ji < Jk < Jj. Ji and Jj are independent if neither J

An efficient way to represent precedence constra

the set of jobs. This graph is known as the precedence graph. Jobs are represented by vertices of

graph and precedence constraints are represented using directed edges. If there is a directed edge

from Ji to Jj then it means that Ji is immediate predecessor of J

having 5 jobs J1, J2, J3, J4 and J5 such that J

and there are no other constraints.

The precedence constraints for this example are:

J1 < J2 and J1 < J5

Set representation of precedence graph:

< (1) = { }

< (2) = {1}

< (3) = { }

< (4) = { }

< (5) = {1}

 EMBEDDED SYSTEM PAGE NO:

the minimum separation between the occurrence of two consecutive instances of the task.

Sometimes actual release time of a job is not known. Only know that ri is in a range

]. This range is known as release time jitter. Here ri– is how early a job can be released and

+ is how late a job can be released. Only range [ei-, ei+] of the execution time of a job is known.

is the minimum amount of time required by a job to complete its execution and e

maximum amount of time required by a job to complete its execution.

Jobs in a task are independent if they can be executed in any order.

If there is a specific order in which jobs in a task have to be executed then jobs are said to have

precedence constraints. For representing precedence constraints of jobs a partial order relation < is

used. This is called precedence relation. A job Ji is a predecessor of job Jj if Ji < Jj i.e. J

is an immediate predecessor of Jj if Ji < Jj and there is no other job

are independent if neither Ji < Jj nor Jj < Ji is true.

An efficient way to represent precedence constraints is by using a directed graph G = (J, <) where J is

the set of jobs. This graph is known as the precedence graph. Jobs are represented by vertices of

graph and precedence constraints are represented using directed edges. If there is a directed edge

is immediate predecessor of Jj. For example: Consider a task T

such that J2 and J5 cannot begin their execution until J

raints for this example are:

Set representation of precedence graph:

PAGE NO:33

the minimum separation between the occurrence of two consecutive instances of the task.

is in a range

is how early a job can be released and

+] of the execution time of a job is known.

to complete its execution and ei+ the

Jobs in a task are independent if they can be executed in any order.

ask have to be executed then jobs are said to have

precedence constraints. For representing precedence constraints of jobs a partial order relation < is

i.e. Jj cannot begin

and there is no other job

ints is by using a directed graph G = (J, <) where J is

the set of jobs. This graph is known as the precedence graph. Jobs are represented by vertices of

graph and precedence constraints are represented using directed edges. If there is a directed edge

. For example: Consider a task T

cannot begin their execution until J1 completes

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

Consider another example where precedence graph is given and you have to find precedence

constraints

From the above graph, we derive the following precedence constraints:

J1 < J2

J2 < J3

J2 < J4

J3 < J4

Sporadic task :

A sporadic task is characterized by three positive integers; an execution time e, a deadline d (relative

to the release time), and a minimum separation p, with e <= d and e <= p.

a request at any time, but two successive requests must be separated in time by at least p “time units.”

Real-time Schedulers :

An RTC scheduler is very simple. Indeed, I have previously

one as a “one line RTOS”. The idea is that one task runs until it has completed its work, then

terminates. Then the next task runs similarly. And so forth until all the tasks have run, when the

sequence starts again.

The simplicity of this scheme is offset by the drawback that each task’s allocation of time is totally

affected by all the others. The system will not b

is quite satisfactory. An added level of sophistication might be support for task suspend, which means

that one or more tasks may be excluded from the execution sequence until they are required again.

Round robin [RR]

An RR scheduler is the next level of complexity. Tasks are run in sequence in just the same way

[with task suspend being a possibility], except that a task does not need to complete its work, it just

relinquishes the CPU when convenient to

it left off.

 EMBEDDED SYSTEM PAGE NO:

Consider another example where precedence graph is given and you have to find precedence

From the above graph, we derive the following precedence constraints:

task is characterized by three positive integers; an execution time e, a deadline d (relative

minimum separation p, with e <= d and e <= p. Sporadic tasks

a request at any time, but two successive requests must be separated in time by at least p “time units.”

An RTC scheduler is very simple. Indeed, I have previously [and only slight inaccurately] referred to

”. The idea is that one task runs until it has completed its work, then

next task runs similarly. And so forth until all the tasks have run, when the

The simplicity of this scheme is offset by the drawback that each task’s allocation of time is totally

affected by all the others. The system will not be very deterministic. But, for some applications, this

is quite satisfactory. An added level of sophistication might be support for task suspend, which means

that one or more tasks may be excluded from the execution sequence until they are required again.

An RR scheduler is the next level of complexity. Tasks are run in sequence in just the same way

[with task suspend being a possibility], except that a task does not need to complete its work, it just

relinquishes the CPU when convenient to do so. When it is scheduled again, it continues from where

PAGE NO:34

Consider another example where precedence graph is given and you have to find precedence

task is characterized by three positive integers; an execution time e, a deadline d (relative

Sporadic tasks may make

a request at any time, but two successive requests must be separated in time by at least p “time units.”

[and only slight inaccurately] referred to

”. The idea is that one task runs until it has completed its work, then

next task runs similarly. And so forth until all the tasks have run, when the

The simplicity of this scheme is offset by the drawback that each task’s allocation of time is totally

e very deterministic. But, for some applications, this

is quite satisfactory. An added level of sophistication might be support for task suspend, which means

that one or more tasks may be excluded from the execution sequence until they are required again.

An RR scheduler is the next level of complexity. Tasks are run in sequence in just the same way

[with task suspend being a possibility], except that a task does not need to complete its work, it just

do so. When it is scheduled again, it continues from where

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

The greater flexibility of an RR scheduler comes at the cost of complexity. When a task relinquishes

the CPU, its context [basically machine register values] needs to be saved so th

next time the task is scheduled. This process is required for all the other scheduler varieties that I will

discuss.

As with RTC, an RR scheduler still relies of each task behaving well and not hanging on to the

processor for too long. Both RTC and RR are “cooperative multitasking”.

Time slice [TS]

A TS scheduler is a straightforward example of “preemptive multitasking”. The idea is to divide time

into “slots”, each of which might be, say, 1mS. Each task gets to run in a slot. At the

allocated time, it is interrupted and the next task run.

The scheduling is not now dependent on tasks being “good citizens”, as time utilization is managed

fairly. A system built with a TS scheduler may be fully deterministic [i.e. predictable

time.

Time slice with background task [TSBG]

Although a TS scheduler is neat and tidy, there is a problem. If a task finds that it has no work to do,

its only option is to loop – burning CPU time

might waste a significant proportion of its slot and an indefinite number of further slots. Clearly, the

task might suspend itself [to be woken again when it is needed], but this messes up the timing of the

other tasks.

 EMBEDDED SYSTEM PAGE NO:

The greater flexibility of an RR scheduler comes at the cost of complexity. When a task relinquishes

the CPU, its context [basically machine register values] needs to be saved so that it can be restored

next time the task is scheduled. This process is required for all the other scheduler varieties that I will

As with RTC, an RR scheduler still relies of each task behaving well and not hanging on to the

. Both RTC and RR are “cooperative multitasking”.

A TS scheduler is a straightforward example of “preemptive multitasking”. The idea is to divide time

into “slots”, each of which might be, say, 1mS. Each task gets to run in a slot. At the end of its

allocated time, it is interrupted and the next task run.

The scheduling is not now dependent on tasks being “good citizens”, as time utilization is managed

fairly. A system built with a TS scheduler may be fully deterministic [i.e. predictable]

Time slice with background task [TSBG]

Although a TS scheduler is neat and tidy, there is a problem. If a task finds that it has no work to do,

burning CPU time – until it can do something useful. This means that it

might waste a significant proportion of its slot and an indefinite number of further slots. Clearly, the

task might suspend itself [to be woken again when it is needed], but this messes up the timing of the

PAGE NO:35

The greater flexibility of an RR scheduler comes at the cost of complexity. When a task relinquishes

at it can be restored

next time the task is scheduled. This process is required for all the other scheduler varieties that I will

As with RTC, an RR scheduler still relies of each task behaving well and not hanging on to the

A TS scheduler is a straightforward example of “preemptive multitasking”. The idea is to divide time

end of its

The scheduling is not now dependent on tasks being “good citizens”, as time utilization is managed

] – it is truly real

Although a TS scheduler is neat and tidy, there is a problem. If a task finds that it has no work to do,

s means that it

might waste a significant proportion of its slot and an indefinite number of further slots. Clearly, the

task might suspend itself [to be woken again when it is needed], but this messes up the timing of the

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

This is unfortunate, as the determinism of the system is compromised. A solution is to enhance the

scheduler so that, if a task suspends itself, the remainder of its slot is taken up by a “background

task”; this task would also use the full slots of any suspended tasks. Thi

What the background task actually does depends on the application, but broadly it must be non

citical code – like self-testing. There is, of course, the possibility that the background task will never

get scheduled. Also, this special task cannot be suspended.

Priority [PRI]

A common, more sophisticated scheduling scheme is PRI, which is used in many [most] commercial

RTOS products. The idea is that each task has a priority and is either “ready” [to run] or

“suspended”. The scheduler runs the task with the highest priority that is “ready”. When that task

suspends, it runs the one with the next highest priority. If an event occurs, which may have readied a

higher priority task, the scheduler is run.

Although more complex, a PRI scheduler give most flexibility for many applications.

 EMBEDDED SYSTEM PAGE NO:

e, as the determinism of the system is compromised. A solution is to enhance the

scheduler so that, if a task suspends itself, the remainder of its slot is taken up by a “background

task”; this task would also use the full slots of any suspended tasks. This restores the timing integrity.

What the background task actually does depends on the application, but broadly it must be non

testing. There is, of course, the possibility that the background task will never

Also, this special task cannot be suspended.

A common, more sophisticated scheduling scheme is PRI, which is used in many [most] commercial

RTOS products. The idea is that each task has a priority and is either “ready” [to run] or

”. The scheduler runs the task with the highest priority that is “ready”. When that task

suspends, it runs the one with the next highest priority. If an event occurs, which may have readied a

higher priority task, the scheduler is run.

lex, a PRI scheduler give most flexibility for many applications.

PAGE NO:36

e, as the determinism of the system is compromised. A solution is to enhance the

scheduler so that, if a task suspends itself, the remainder of its slot is taken up by a “background

s restores the timing integrity.

What the background task actually does depends on the application, but broadly it must be non-time-

testing. There is, of course, the possibility that the background task will never

A common, more sophisticated scheduling scheme is PRI, which is used in many [most] commercial

RTOS products. The idea is that each task has a priority and is either “ready” [to run] or

”. The scheduler runs the task with the highest priority that is “ready”. When that task

suspends, it runs the one with the next highest priority. If an event occurs, which may have readied a

lex, a PRI scheduler give most flexibility for many applications.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:37
 Email id: sujeetkumarnayak.in@gmail.com

Commercial RTOS products, like our own Nucleus RTOS, tend to use a priority scheduling scheme,

but allow multiple tasks at each priority level. A time slice mechanism is then employed to allocate

CPU time between multiple “ready” tasks of the same priority.

Types Of Tasks :

Types of Real-Time Tasks

 Based on the way real-time tasks recur over a period of time, it is possible to classify them into three

main categories: periodic, sporadic, and aperiodic tasks. In the following, we discuss the important

characteristics of these three major categories of real-time tasks.

Periodic Task: A periodic task is one that repeats after a certain fixed time interval. The precise time

instants at which periodic tasks recur are usually demarcated by clock interrupts. For this reason,

periodic tasks are sometimes referred to as clock-driven tasks. The fixed time interval after which a

task repeats is called the period of the task. If Ti is a periodic task, then the time from 0 till the

occurrence of the first instance of Ti (i.e. Ti(1)) is denoted by φi, and is called the phase of the task.

The second instance (i.e. Ti(2)) occurs at φi + pi. The third instance (i.e. Ti(3)) occurs at φi + 2pi and

so on.

Formally, a periodic task Ti can be represented by a 4 tuple (φi, pi, ei, di)

where pi is the period of task,

ei is the worst case execution time of the task,

and di is the relative deadline of the task.

We shall use this notation extensively in future discussions.

To illustrate the above notation to represent real-time periodic tasks, let us consider the track

correction task typically found in a rocket control software. Assume the following characteristics of

the track correction task. The track correction task starts 2000 milliseconds after the launch of the

rocket, and recurs periodically every 50 milliseconds then on. Each instance of the task requires a

processing time of 8 milliseconds and its relative deadline is 50 milliseconds. Recall that the phase of

a task is defined by the occurrence time of the first instance of the task. Therefore, the phase of this

task is 2000 milliseconds.

This task can formally be represented as (2000 mSec, 50 mSec, 8 mSec, 50 mSec).

When the deadline of a task equals its period (i.e. pi=di), we can omit the fourth tuple. In this case,

we can represent the task as Ti= (2000 mSec, 50 mSec, 8 mSec). This would automatically mean

pi=di=50 mSec. Similarly, when φi = 0, it can be omitted when no confusion arises.

So, Ti = (20mSec; 100mSec) would indicate a task with φi = 0, pi=100mSec, ei=20mSec, and

di=100mSec. Whenever there is any scope for confusion, we shall explicitly write out the parameters

Ti = (pi=50 mSecs, ei = 8 mSecs, di = 40 mSecs), etc. Φ Φ + pi Φ + 2*pi Φ = 2000 di ei 0

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:38
 Email id: sujeetkumarnayak.in@gmail.com

A vast majority of the tasks present in a typical real-time system are periodic. The reason for this is

that many activities carried out by real-time systems are periodic in nature, for example monitoring

certain conditions, polling information from sensors at regular intervals to carry out certain action at

regular intervals (such as drive some actuators). We shall consider examples of such tasks found in a

typical chemical plant. In a chemical plant several temperature monitors, pressure monitors, and

chemical concentration monitors periodically sample the current temperature, pressure, and chemical

concentration values which are then communicated to the plant controller. The instances of the

temperature, pressure, and chemical concentration monitoring tasks normally get generated through

the interrupts received from a periodic timer. These inputs are used to compute corrective actions

required to maintain the chemical reaction at a certain rate. The corrective actions are then carried out

through actuators.

Sporadic Task: A sporadic task is one that recurs at random instants. A sporadic task Ti can be is

represented by a three tuple: Ti = (ei, gi, di) where ei is the worst case execution time of an instance

of the task, gi denotes the minimum separation between two consecutive instances of the task, di is

the relative deadline. The minimum separation (gi) between two consecutive instances of the task

implies that once an instance of a sporadic task occurs, the next instance cannot occur before gi time

units have elapsed. That is, gi restricts the rate at which sporadic tasks can arise. As done for periodic

tasks, we shall use the convention that the first instance of a sporadic task Ti is denoted by Ti(1) and

the successive instances by Ti(2), Ti(3), etc. Many sporadic tasks such as emergency message

arrivals are highly critical in nature. For example, in a robot a task that gets generated to handle an

obstacle that suddenly appears is a sporadic task. In a factory, the task that handles fire conditions is a

sporadic task. The time of occurrence of these tasks can not be predicted. The criticality of sporadic

tasks varies from highly critical to moderately critical.

For example, an I/O device interrupt, or a DMA interrupt is moderately critical. However, a task

handling the reporting of fire conditions is highly critical.

Aperiodic Task: An aperiodic task is in many ways similar to a sporadic task. An aperiodic task can

arise at random instants. However, in case of an aperiodic task, the minimum separation gi between

two consecutive instances can be 0. That is, two or more instances of an aperiodic task might occur at

the same time instant. Also, the deadline for an aperiodic tasks is expressed as either an average value

or is expressed statistically. Aperiodic tasks are generally soft real-time tasks. It is easy to realize

why aperiodic tasks need to be soft real-time tasks. Aperiodic tasks can recur in quick succession. It

therefore becomes very difficult to meet the deadlines of all instances of an aperiodic task. When

several aperiodic tasks recur in a quick succession, there is a bunching of the task instances and it

might lead to a few deadline misses. As already discussed, soft real-time tasks can tolerate a few

deadline misses. An example of an aperiodic task is a logging task in a distributed system. The

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:39
 Email id: sujeetkumarnayak.in@gmail.com

logging task can be started by different tasks running on different nodes. The logging requests from

different tasks may arrive at the logger almost at the same time, or the requests may be spaced out in

time. Other examples of aperiodic tasks include operator requests, keyboard presses, mouse

movements, etc. In fact, all interactive commands issued by users are handled by aperiodic tasks.

Clock-Driven Scheduling :

Clock-driven schedulers make their scheduling decisions regarding which task to run next only at the

clock interrupt points. Clock-driven schedulers are those for which the scheduling points are

determined by timer interrupts. Clock- driven schedulers are also called off-line schedulers because

these schedulers fix the schedule before the system starts to run. That is, the scheduler pre-determines

which task will run when. Therefore, these schedulers incur very little run time overhead. However, a

prominent shortcoming of this class of schedulers is that they can not satisfactorily handle aperiodic

and sporadic tasks since the exact time of occurrence of these tasks can not be predicted. For this

reason, this type of schedulers is also called static scheduler. In this section, we study the basic

features of two important clock-driven schedulers: table-driven and cyclic schedulers.

Table-Driven Scheduling :

Table-driven schedulers usually pre-compute which task would run when, and store this schedule in a

table at the time the system is designed or configured. Rather than automatic computation of the

schedule by the scheduler, the application programmer can be given the freedom to select his own

schedule for the set of tasks in the application and store the schedule in a table (called schedule table)

to be used by the scheduler at run time. An example of a schedule

if a set ST = {Ti} of n tasks is to be scheduled, then the entries in the table will replicate themselves

after LCM (p1, p2, … ,pn) time units, where p1, p2, …, pn are the periods of T1, T2, ..., Tn. For

example, if we have the following three tasks: (e1=5 msecs, p1=20 msecs), (e2=20 msecs, p2=100

msecs), (e3=30 msecs, p3=250 msecs); then, the schedule will repeat after every 1000 msecs. So, for

any given task set, it is sufficient to store entries only for LCM (p1, p2, … ,pn) duration in the

schedule table. LCM (p1, p2, …, pn) is called the major cycle of the set of tasks ST.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:40
 Email id: sujeetkumarnayak.in@gmail.com

 MODULE-3

 Software and programming concept

Processor selection for an embedded system:-

Selecting the right processor for the given application is one of the main challenges and

an important task for the design of efficient embedded system. Three types of processors

are generally used in embedded systems namely: general-purpose processors,

microcontrollers, and Digital Signal Processors (DSP).

General purpose processors, also known as microprocessors, are available with a bit

range of 4 bit to 64 bit from various vendors and are characterized by distinct parameters

such as: data lines, address lines, speed, and cost. These are used in many embedded

systems from Keyboard controllers to Robots. Microcontrollers, on the other hand, are

used in controlled applications and playa key role in the design of embedded systems.

These are available from many vendors for low-end applications to high-end applications

with a bit range of 4 bit to 64 bit. The third type of processors namely DSP processors are

basically designed for highly mathematical intensive applications. They are available in

floating point (32 bit) and fixed point (16 bit) form from various vendors and with

different types in each category. These are used to handle the complex applications like

signal processing, image processing and communications etc.

For selection of the suitable processor.

There are two aspects about finding the right processor for a given application. The first

aspect is to choose the processor. The second is to evaluate whether the chosen processor

is a good match for the application. There are many techniques for both processor

selection and processor evaluation for embedded systems.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:41
 Email id: sujeetkumarnayak.in@gmail.com

With numerous kinds of processors with various design philosophies available at our disposal for

using in our design, following considerations need to be factored during processor selection for an

embedded system.

• Performance Considerations

• Power considerations

• Peripheral Set

• Operating Voltage

• Specialized Processing Units

Performance considerations

The first and foremost consideration in selecting the processor is its performance. The performance

speed of a processor is dependent primarily on its architecture and its silicon design. Evolution of

fabrication techniques helped packing more transistors in same area there by reducing the

propagation delay. Also presence of cache reduces instruction/data fetch timing. Pipelining and

super-scalar architectures further improves the performance of the processor. Branch prediction,

speculative execution etc are some other techniques used for improving the execution rate. Multi-

cores are the new direction in improving the performance.

Rather than simply stating the clock frequency of the processor which has limited significance to its

processing power, it makes more sense to describe the capability in a standard notation. MIPS

(Million Instructions Per Second) or MIPS/MHz was an earlier notation followed by Dhrystones and

latest EEMBC’s CoreMark. CoreMark is one of the best ways to compare the performance of

various processors.

Processor architectures with support for extra instruction can help improving performance for

specific applications. For example, SIMD (Single Instruction/Multiple Data) set and Jazelle – Java

acceleration can help in improving multimedia and JVM execution speeds.

So size of cache, processor architecture, instruction set etc has to be taken in to account when

comparing the performance.

Power Considerations

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:42
 Email id: sujeetkumarnayak.in@gmail.com

Increasing the logic density and clock speed has adverse impact on power requirement of the

processor. A higher clock implies faster charge and discharge cycles leading to more power

consumption. More logic leads to higher power density there by making the heat dissipation difficult.

Further with more emphasis on greener technologies and many systems becoming battery operated, it

is important the design is for optimal power usage.

Techniques like frequency scaling – reducing the clock frequency of the processor depending on the

load, voltage scaling – varying the voltage based on load can help in achieving lower power usage.

Further asymmetric multiprocessors, under near idle conditions, can effectively power off the more

powerful core and load the less powerful core for performing the tasks. SoC comes with advanced

power gating techniques that can shut down clocks and power to unused modules.

Peripheral Set

Every system design needs, apart from the processor, many other peripherals for input and output

operations. Since in an embedded system, almost all the processors used are SoCs, it is better if the

necessary peripherals are available in the chip itself. This offers various benefits compared to

peripherals in external IC’s such as optimal power architecture, effective data communication using

DMA, lower BoM etc. So it is important to have peripheral set in consideration when selecting the

processor.

Operating Voltages

Each and every processor will have its own operating voltage condition. The operating voltage

maximum and minimum ratings will be provided in the respective data sheet or user manual.

While higher end processors typically operate with 2 to 5 voltages including 1.8V for

Cores/Analogue domains, 3.3V for IO lines, needs specialized PMIC devices, it is a deciding factor

in low end micro-controllers based on the input voltage. For example it is cheaper to work with a 5V

micro-controller when the input supply is 5V and a 3.3 micro-controllers when operated with Li-on

batteries.

Specialized Processing

Apart from the core, presence of various co-processors and specialized processing units can help

achieving necessary processing performance. Co-processors execute the instructions fetched by the

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:43
 Email id: sujeetkumarnayak.in@gmail.com

primary processor thereby reducing the load on the primary. Some of the popular co-processors

include

Floating Point Co-processor:

RISC cores supports primarily integer only instruction set. Hence presence of a FP co-processor can

be very helpful in application involving complex mathematical operations including multimedia,

imaging, codecs, signal processing etc.

Graphic Processing Unit:

GPU(Graphic Processing Unit) also called as Visual processing unit is responsible for drawing

images on the frame buffer memory to be displayed. Since human visual perception needed at-least

16 Frames per second for a smooth viewing, drawing for HD displays involves a lot of data

bandwidth. Also with increasing graphic requirements such as textures, lighting shaders etc, GPU’s

have become a mandatory requirements for mobile phones, gaming consoles etc.

Various GPU’s like ARM’s MALI, PowerVX, OpenGL etc are increasing available in higher end

processors. Choosing the right co-processor can enable smooth design of the embedded application.

Digital Signal Processors

DSP is a processor designed specifically for signal processing applications. Its architecture supports

processing of multiple data in parallel. It can manipulate real time signal and convert to other

domains for processing. DSP’s are either available as the part of the SoC or separate in an external

package. DSP’s are very helpful in multimedia applications. It is possible to use a DSP along with a

processor or use the DSP as the main processor itself.

Price

Various considerations discussed above can be taken in to account when a processor is being selected

for an embedded design. It is better to have some extra buffer in processing capacities to enable

enhancements in functionality without going for a major change in the design. While engineers

(especially software/firmware engineers) will want to have all the functionalities, price will be the

determining factor when designing the system and choosing the right processor.

StateChart

State Charts are among the widely used specification techniques, suitable particularly for control-

dominated embedded system specifications. It is a modification of finite state machine (FSM)

commonly used in controller specification. It may be noted that the normal FSM specification suffers

from the following drawbacks.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:44
 Email id: sujeetkumarnayak.in@gmail.com

1. Complexity of the state diagram increases dramatically as the number of possible states increases.

This poses a major bottleneck in modelling large systems.

2. In traditional state machines, there is no concept of hierarchy. This, in turn, leads to

the previous problem of state-explosion.

3. There is no support for concurrent constructs. Traditional state machine modelling is

based on sequential transitions from one state to the next. Concurrent systems cannot be modelled in

this manner, as various portions of the system may be in different states.

State Charts introduced by David Harel in 1987, have some special features to overcome these

problems. It allows the system to be simultaneously in more than one state. The concurrency can be

modelled easily. The concept will become more clear when we discuss about the super states. The

states can communicate and synchronize between themselves. Some of the important features are as

follows.

 1. All orthogonal regions of the chart (that is, different subsystems within the whole system)

accept events sent to the object.

2. One region may create an event as a result of a transition that is consumed by another

orthogonal region.

3. A guard may be used to test if another region is in a certain state before allowing a

transition to occur to the guarded state.

There can be two types of super states.

1. OR-super state: This is commonly available in FSMs. The system, at

time, is in one of the constituent sub states of an OR-super state. For example,

FSM, it is always in one of its sub states.

 2. AND-super state: An AND-super state encompasses a number of sub states, the

can be in all these states simultaneously. Though this apparently seems counter-intuitive, it can be

utilized to model systems with different subsystems. For example, as shown in Fig., the state S is an

AND-super state. It has two sub states, each of which OR-super state. Thus, the system can be

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

simultaneously in one of the basic states{s1,s2,

P3, ...} for the second subsystem. If the number

of states in the first subsystem is n1 and that in the second subsystem n2, then the total number of

states needed in the AND-super state is n1+n2 . How in the absence of such a

n2 states will be needed to represent the system S. The AND

orthogonal states. Each of these orthogonal states can be used to model different regions of the

system.

(Figure of AND-super state.)

1. Transitions from super states: Figure shows a hierarchical State

state S is an OR-super state. While the system is in state S, it is in either of the states P

state P, on occurrence of event C, it transitions to sta

occurrence of event E, it will switch from state S to state T.

2. Start and stop states: Like FSM, state chart may also have explicit start and stop state.

indicated by simple large dots, whereas

Chart has S as the start state. Within S,P is the start state.

That is whenever the state S is entered, unless otherwise stated. The state P will be reached. Thus P

is also called the default state of S.

 EMBEDDED SYSTEM PAGE NO:

ously in one of the basic states{s1,s2, S3, ...} for the first subsystem, and in one of {P1, P2,

If the number

of states in the first subsystem is n1 and that in the second subsystem n2, then the total number of

super state is n1+n2 . How in the absence of such a feature, a total of n1 X

n2 states will be needed to represent the system S. The AND-super states are also said to consist of

orthogonal states. Each of these orthogonal states can be used to model different regions of the

states: Figure shows a hierarchical State Chart in which the

super state. While the system is in state S, it is in either of the states P

state P, on occurrence of event C, it transitions to state Q. In whatever sub state the system be, on

occurrence of event E, it will switch from state S to state T.

2. Start and stop states: Like FSM, state chart may also have explicit start and stop state.

indicated by simple large dots, whereas the stop states are encircled dot. example, the overall State

Chart has S as the start state. Within S,P is the start state.

That is whenever the state S is entered, unless otherwise stated. The state P will be reached. Thus P

PAGE NO:45

stem, and in one of {P1, P2,

of states in the first subsystem is n1 and that in the second subsystem n2, then the total number of

feature, a total of n1 X

states are also said to consist of

orthogonal states. Each of these orthogonal states can be used to model different regions of the

super state. While the system is in state S, it is in either of the states P or Q. From

te Q. In whatever sub state the system be, on

2. Start and stop states: Like FSM, state chart may also have explicit start and stop state. Start state

the stop states are encircled dot. example, the overall State

That is whenever the state S is entered, unless otherwise stated. The state P will be reached. Thus P

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

3. History mechanism: Sometimes, it may be required that the system when transitioning

into a superstate, should enter into the substate it was in the last time. This can be accomplished by

the history mechanism (as shown in Fig). Here, while

remembers the substate in which it was. Later on, while transitioning from T to S, the arrow reaching

H indicates that it should restart from the state the system remembered.

4. Timers: These are very important for real

 represented as a state with a time value. Once the state has been entered, if no event

occurs to create a transition out of the state, the timer will time out and marked timeout from this

state will take place. This has been shown which the state P is a timer with a timeout period of 10 ms.

If the event x does not occur within this 10 ms time, the transition labeled timeout to state

place.

5. Edge labels: The transitions in a StateChart are labeled

< event > < condition >][/ < reaction>]

Thus, there must be an event associated with a transition. The < condition

is an expression involving values of variables. The condition is enclosed within.

‘[‘ and ‘]’. The < reaction > part sets some variables to new values. Thus some typical edge labels

can be,

key-pressed / on := 1

key-pressed (on = 1]/ on := 0

key-pressed (on = 0]/ on := 1; light = 1

 EMBEDDED SYSTEM PAGE NO:

3. History mechanism: Sometimes, it may be required that the system when transitioning

into a superstate, should enter into the substate it was in the last time. This can be accomplished by

the history mechanism (as shown in Fig). Here, while transitioning out of state S, the system

remembers the substate in which it was. Later on, while transitioning from T to S, the arrow reaching

H indicates that it should restart from the state the system remembered.

for real-time embedded systems. A timer is also

as a state with a time value. Once the state has been entered, if no event

occurs to create a transition out of the state, the timer will time out and marked timeout from this

ace. This has been shown which the state P is a timer with a timeout period of 10 ms.

occur within this 10 ms time, the transition labeled timeout to state

5. Edge labels: The transitions in a StateChart are labeled as,

< event > < condition >][/ < reaction>]

Thus, there must be an event associated with a transition. The < condition> act as a Boolean guard. It

is an expression involving values of variables. The condition is enclosed within.

ion > part sets some variables to new values. Thus some typical edge labels

pressed (on = 0]/ on := 1; light = 1

PAGE NO:46

3. History mechanism: Sometimes, it may be required that the system when transitioning

into a superstate, should enter into the substate it was in the last time. This can be accomplished by

transitioning out of state S, the system

remembers the substate in which it was. Later on, while transitioning from T to S, the arrow reaching

occurs to create a transition out of the state, the timer will time out and marked timeout from this

ace. This has been shown which the state P is a timer with a timeout period of 10 ms.

occur within this 10 ms time, the transition labeled timeout to state S takes

t as a Boolean guard. It

ion > part sets some variables to new values. Thus some typical edge labels

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:47
 Email id: sujeetkumarnayak.in@gmail.com

6. State Chart simulation: StateChart execution consists of three phases.

 In the first phase,the events and conditions are evaluated from the current state of the system. The

transitions that are enabled by the process are identified.

In the second phase, for the enabled transitions, the reactions are evaluated, but are not immediately

assigned to variables, rather, they are kept in temporaries.

In the third and final step, the transition to the new state takes place and the variables are assigned the

values evaluated in the temporaries. This three-step semantics helps in simulating situations in which

a variable is being modified in a transition, whereas, in another simultaneous transition, the variable

appears in the condition part.

Specification and Description Language (SDL)

SDL is a premier language for specification, design, and development of real-time systems, in

particular, the telecommunication applications. The currently available version is SDL2000, proposed

in 1999 by ITU-T and some modifications later on. It is a graphical language and is based on the

concept of Extended Finite State Machine (EFSM). An SDL system consists of one or more

communicating agents, with the outermost agent communicating with the environment. An agent

may in turn contain other agents in a hierarchy, definition of behaviour by EFSM, data variables of

value or references data types and communication based on asynchronous message exchange.

SDL specification consists of a set of diagrams. The top-level diagram is the out most agent, it shows

the connection between the system components and the environment. Each diagram has one or more

pages, each page having the following:

• a frame with some information attached to the outside.

 • the diagram heading showing the kind and identity of the item describe. In the top left

corner.

• page name and number of pages in the top right corner

The following symbols are used in SDL:-

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

A system diagram can contain process agents or block agents.

work concurrently and asynchronously, whereas, instances with

time. A block agent can contain within it other bloc

contain other process agents only within it.

SDL extends the concept of FSM in the following two ways.

1. Each agent has got a queue associated with it that stores all the signals received in a

first-in-first-out manner.

2. Data can be received in signals, stored in variables, used in expressions, used to decide

the behaviour of the agent, and passed out in output signals.

The FSM waits in its current state until one of the signals that can be consumed in that state is

available.

Petri Nets

Petri Nets (also called Place/Transition Net or P/T Net) is one of the several mathematical

representations of discrete distributed systems that hav

 EMBEDDED SYSTEM PAGE NO:

A system diagram can contain process agents or block agents. Instance with in a block agent

work concurrently and asynchronously, whereas, instances within a process are scheduled one

time. A block agent can contain within it other block agent or process, where as a process

contain other process agents only within it.

SDL extends the concept of FSM in the following two ways.

ociated with it that stores all the signals received in a

2. Data can be received in signals, stored in variables, used in expressions, used to decide

the behaviour of the agent, and passed out in output signals.

in its current state until one of the signals that can be consumed in that state is

Petri Nets (also called Place/Transition Net or P/T Net) is one of the several mathematical

representations of discrete distributed systems that have been widely used for system modelling in

PAGE NO:48

Instance with in a block agent The

are scheduled one at a

, where as a process can

ociated with it that stores all the signals received in a

2. Data can be received in signals, stored in variables, used in expressions, used to decide

in its current state until one of the signals that can be consumed in that state is

Petri Nets (also called Place/Transition Net or P/T Net) is one of the several mathematical

e been widely used for system modelling in

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

many fields of science. It was invented by Carl Adam Petri in 1962 in his Ph.D. thesis. Two

important intrinsic features of Petri Nets are concurrency and asynchronous nature. These, together

with generality and flexibility have stimulated their applications in several areas including

specification and verification of real-time embedded systems.

Basic Petri Nets

A Petri Net consists of places, transitions and directed arcs.

transitions. These can never be between places, or between transitions. Graphically, the places are

represented by circles and transitions by solid lines.

The places from which an arc runs to a transition are called input places for the transition. Similarly,

the places to which arcs run from a transition are called output places for the transition. Each place

may contain any number of tokens.

In basic Petri Net structure, a token is represented by a small filled circle. The distribution of tokens

among the places, at any point of time, is called marking.

 A transition is enabled when all its input places have sufficient number of tokens. An enabled

transition may fire, consuming the tokens from its input places, and placing a specified number of

tokens at its output places.

The entire firing operation is atomic, that is, once a transition fires, all the subtasks, as listed above,

are performed together. It may further be noted that the execution of Petri Nets is non

That is, given a number of enabled transitions at a time, zero or any one of them can fire.

It is not necessary for an enabled transition to fire till the

Petri Nets are suitable for modelling concurrent behaviour of distributed systems.

very simple Petri Net consisting of two paces pl and p2, and a transition tl. Initially, only the place pl

has a token.

Properties of a Petri Net On a system modelled using Petri Net, we can verify several properties.

The following are some of those. The process allows us to verify many physical properties of the

system.

1. Termination: Whether the net terminates.

 EMBEDDED SYSTEM PAGE NO:

many fields of science. It was invented by Carl Adam Petri in 1962 in his Ph.D. thesis. Two

important intrinsic features of Petri Nets are concurrency and asynchronous nature. These, together

lexibility have stimulated their applications in several areas including

time embedded systems.

A Petri Net consists of places, transitions and directed arcs. Arcs can run between places and

ns. These can never be between places, or between transitions. Graphically, the places are

represented by circles and transitions by solid lines.

The places from which an arc runs to a transition are called input places for the transition. Similarly,

places to which arcs run from a transition are called output places for the transition. Each place

In basic Petri Net structure, a token is represented by a small filled circle. The distribution of tokens

, at any point of time, is called marking.

A transition is enabled when all its input places have sufficient number of tokens. An enabled

transition may fire, consuming the tokens from its input places, and placing a specified number of

, that is, once a transition fires, all the subtasks, as listed above,

are performed together. It may further be noted that the execution of Petri Nets is non

d transitions at a time, zero or any one of them can fire.

It is not necessary for an enabled transition to fire till the infinite time. Due to this non

Petri Nets are suitable for modelling concurrent behaviour of distributed systems. Figure

consisting of two paces pl and p2, and a transition tl. Initially, only the place pl

On a system modelled using Petri Net, we can verify several properties.

The following are some of those. The process allows us to verify many physical properties of the

Whether the net terminates.

PAGE NO:49

many fields of science. It was invented by Carl Adam Petri in 1962 in his Ph.D. thesis. Two

important intrinsic features of Petri Nets are concurrency and asynchronous nature. These, together

lexibility have stimulated their applications in several areas including

Arcs can run between places and

ns. These can never be between places, or between transitions. Graphically, the places are

The places from which an arc runs to a transition are called input places for the transition. Similarly,

places to which arcs run from a transition are called output places for the transition. Each place

In basic Petri Net structure, a token is represented by a small filled circle. The distribution of tokens

A transition is enabled when all its input places have sufficient number of tokens. An enabled

transition may fire, consuming the tokens from its input places, and placing a specified number of

, that is, once a transition fires, all the subtasks, as listed above,

are performed together. It may further be noted that the execution of Petri Nets is non-deterministic.

d transitions at a time, zero or any one of them can fire.

time. Due to this non-determinism,

Figure shows a

consisting of two paces pl and p2, and a transition tl. Initially, only the place pl

On a system modelled using Petri Net, we can verify several properties.

The following are some of those. The process allows us to verify many physical properties of the

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:50
 Email id: sujeetkumarnayak.in@gmail.com

2. Immediate reachability: Is a state reachable when a transition fires?

3. Reachability: Is a state eventually reachable?

4. Liveness in all states: Is there one transition that can fire?

5. Partial deadlock: Is there a state in which there is at least one transition that can

never fire?

6. Deadlock: Is there a state in which none of the transitions can fire?

7. Safety in all states: Does each place contain at most one token?

8 Bounded ness in all states: Is there a limit to the number of tokens that can be in one place?

9 Conservativeness: Is the total number of tokens in the Petri Net constant?

Unified Modelling Language (UML)

The Unified Modelling Language (UML) is originally proposed for modelling complex, software

intensive systems. It provides quite a few advantages over SDL. It is less formal, and thus can be

used at an early stage to structure and analyse the concepts of an application domain before the

functional design is made. SDL does not support relations in object modelling. thus, UML can be

used to develop the formal functional design in SDL using the object models of UML.

UML is a graphical language consisting of different types of diagrams that can be used to scribe a

model from different angles.

The diagrams can be classified into three categories.

• Behaviour diagrams- describing behavioural features of a system. This include activity,

state machine, use case, as well as the following four interaction diagrams.

 Interaction diagrams-a subset of behaviour diagrams emphasizing object interaction

This includes communication, interaction, overview, sequence, and timing diagram

• Structure diagrams- depict the elements of a specification that are irrespective of time.

The constituents are class, composite structure, component, deployment, object

package diagrams.

Activity diagram

This represents the operational step-by-step workflows of components in a system. It gives the

overall flow of control. UML activity diagrams may be considered as object-oriented equivalent of

flow charts and data flow diagrams. Thus, it often consists of different types of components as shown

in figure.

 Sujeet kumar nayak
 Email id: sujeetkumarnayak.in@gmail.com

Class diagram is a static diagram. It represents the static view of an application. Class diagram is

not only used for visualizing, describing, and documenting different aspects of a system but also for

constructing executable code of the software application.

Class diagram describes the attributes and operations of a class and also the constraints imposed on

the system. The class diagrams are widely used in the modelling of objectoriented systems because

they are the only UML diagrams, which can be mapped directly with

Class diagram shows a collection of classes, interfaces, associations, collaborations, and constraints.

It is also known as a structural diagram.

Purpose of Class Diagrams

The purpose of class diagram is to model the static view

only diagrams which can be directly mapped with object

the time of construction.

UML diagrams like activity diagram, sequence diagram can only give the sequence flow of t

application, however class diagram is a bit different. It is the most popular UML diagram in the

coder community.

The purpose of the class diagram can be summarized as

• Analysis and design of the static view of an application.

• Describe responsibilities of a system.

• Base for component and deployment diagrams.

 EMBEDDED SYSTEM PAGE NO:

is a static diagram. It represents the static view of an application. Class diagram is

not only used for visualizing, describing, and documenting different aspects of a system but also for

constructing executable code of the software application.

agram describes the attributes and operations of a class and also the constraints imposed on

the system. The class diagrams are widely used in the modelling of objectoriented systems because

they are the only UML diagrams, which can be mapped directly with object-oriented languages.

Class diagram shows a collection of classes, interfaces, associations, collaborations, and constraints.

It is also known as a structural diagram.

The purpose of class diagram is to model the static view of an application. Class diagrams are the

only diagrams which can be directly mapped with object-oriented languages and thus widely used at

UML diagrams like activity diagram, sequence diagram can only give the sequence flow of t

application, however class diagram is a bit different. It is the most popular UML diagram in the

The purpose of the class diagram can be summarized as −

Analysis and design of the static view of an application.

of a system.

Base for component and deployment diagrams.

PAGE NO:51

is a static diagram. It represents the static view of an application. Class diagram is

not only used for visualizing, describing, and documenting different aspects of a system but also for

agram describes the attributes and operations of a class and also the constraints imposed on

the system. The class diagrams are widely used in the modelling of objectoriented systems because

oriented languages.

Class diagram shows a collection of classes, interfaces, associations, collaborations, and constraints.

of an application. Class diagrams are the

oriented languages and thus widely used at

UML diagrams like activity diagram, sequence diagram can only give the sequence flow of the

application, however class diagram is a bit different. It is the most popular UML diagram in the

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:52
 Email id: sujeetkumarnayak.in@gmail.com

• Forward and reverse engineering.

Component diagrams are different in terms of nature and behavior. Component diagrams are used to

model the physical aspects of a system. Now the question is, what are these physical aspects?

Physical aspects are the elements such as executables, libraries, files, documents, etc. which reside

in a node.

Component diagrams are used to visualize the organization and relationships among components in

a system. These diagrams are also used to make executable systems.

Purpose of Component Diagrams

Component diagram is a special kind of diagram in UML. The purpose is also different from all

other diagrams discussed so far. It does not describe the functionality of the system but it describes

the components used to make those functionalities.

Thus from that point of view, component diagrams are used to visualize the physical components in

a system. These components are libraries, packages, files, etc.

Component diagrams can also be described as a static implementation view of a system. Static

implementation represents the organization of the components at a particular moment.

A single component diagram cannot represent the entire system but a collection of diagrams is used

to represent the whole.

The purpose of the component diagram can be summarized as −

• Visualize the components of a system.

• Construct executables by using forward and reverse engineering.

• Describe the organization and relationships of the components.

the use case diagram is dynamic in nature, there should be some internal or external factors for

making the interaction.

These internal and external agents are known as actors. Use case diagrams consists of actors, use

cases and their relationships. The diagram is used to model the system/subsystem of an application.

A single use case diagram captures a particular functionality of a system.

Hence to model the entire system, a number of use case diagrams are used.

Purpose of Use Case Diagrams

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:53
 Email id: sujeetkumarnayak.in@gmail.com

The purpose of use case diagram is to capture the dynamic aspect of a system. However, this

definition is too generic to describe the purpose, as other four diagrams (activity, sequence,

collaboration, and Statechart) also have the same purpose. We will look into some specific purpose,

which will distinguish it from other four diagrams.

Use case diagrams are used to gather the requirements of a system including internal and external

influences. These requirements are mostly design requirements. Hence, when a system is analyzed

to gather its functionalities, use cases are prepared and actors are identified.

When the initial task is complete, use case diagrams are modelled to present the outside view.

In brief, the purposes of use case diagrams can be said to be as follows −

• Used to gather the requirements of a system.

• Used to get an outside view of a system.

• Identify the external and internal factors influencing the system.

• Show the interaction among the requirements are actors.

Sequence Diagrams –

A sequence diagram simply depicts interaction between objects in a sequential order i.e. the order in

which these interactions take place. We can also use the terms event diagrams or event scenarios to

refer to a sequence diagram. Sequence diagrams describe how and in what order the objects in a

system function. These diagrams are widely used by businessmen and software developers to

document and understand requirements for new and existing systems.

Sequence Diagram Notations –

1. Actors – An actor in a UML diagram represents a type of role where it interacts with the system

and its objects. It is important to note here that an actor is always outside the scope of the system

we aim to model using the UML diagram.

We use actors to depict various roles including human users and other external subjects. We

represent an actor in a UML diagram using a stick person notation. We can have multiple actors

in a sequence diagram.

2. Lifelines – A lifeline is a named element which depicts an individual participant in a sequence

diagram. So basically each instance in a sequence diagram is represented by a lifeline. Lifeline

elements are located at the top in a sequence diagram. The standard in UML for naming a lifeline

follows the following format – Instance Name : Class Name

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:54
 Email id: sujeetkumarnayak.in@gmail.com

We display a lifeline in a rectangle called head with its name and type. The head is located on top of a

vertical dashed line (referred to as the stem) as shown above. If we want to model an unnamed instance,

we follow the same pattern except now the portion of lifeline’s name is left blank.

Low Power Embedded System

Design

Power consumption is a very important issue in embedded system design. Many of the embedded

applications are built around batteries, and thus, battery life is a critical concern in judging their

acceptance. Some of the important issues to consider include power consumption limits, size

restrictions, I/O requirements, operational duty cycle, etc. There are several practical considerations

that are involved in the process.

1. Recharging facility: It is not always possible to recharge/replace the batteries of embedded

system. This is particularly true for systems employed at remote and difficult-to reach places for

example, a data collection centre for wildlife.

 2. Device size: Unfortunately, battery technology has not scaled down at the same rate as IC

technology. Thus, the weight and size of the device is often guided by the required battery capacity

and its associated size. This is a very practical problem for mobile/portable devices.

 3. Duration of operation: The duration for which a device needs to be active, is another major issue

determining the total energy consumption. If the device is idle for majority of the time, a power-

down mode may be incorporated into the design to save power.

 4. Power required by the device: This is the most important issue and needs to be estimated even at

the stage of initial design . A better estimation helps in the design process to try out alternatives.

5. I/O device types : The 1/0 interfaces, like optically isolated I/O and electromechanical relays

consume high power. Thus, the system designer needs to avoid them altogether or minimize their

active periods.

6. Speed of operation: As we will see later, power consumption is directly proportional to the

frequency of operation. The system designer needs to identify the optimum speed for each

component, so that the performance target is met, at the same time, individual are not operated at a

speed higher than the required one.

Sources of Power Dissipation

Since majority of the systems designed are built around CMOS, in this section we will look into the

different sources of power dissipation in CMOS. The total power consumed can broadly be divided

into dynamic power and static power.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:55
 Email id: sujeetkumarnayak.in@gmail.com

Dynamic power dissipation

 This refers to the power consumed by a circuit/system due to some activities within it. For a static

CMOS realization, at steady-state, either the pull-up (p) or the pull-down (n) network is OFF. Thus,

when there are no activities in the system, power consumption is expected to very low. During circuit

activities, the power consumed depend upon the following two mechanisms

 1.Both p- and n- networks are ON simultaneously, shorting the power supply line to the ground. If

V is the supply voltage and I mean is the average current drawn during the input transition, then the

short-circuit power is given by.

P short circuit = I mean x V DD

 For properly sized and ratioed gates, the contribution to the overall dynamic power due

To P shortcircuit is of the order of 10-20%.

2. Switching power dissipation: This is the power consumed due to charging and discharging of

capacitive loads when the circuit has some activities due to change in inputs. The capacitive load at

different circuit gates depends upon the fan out of the gate, output capacitance, and wiring

capacitances. It may be noted that a node with load capacitance might not switch when the clock is

switching. To take care of this, a quantity called switching activity (a) is often used. It determines

how often switching occurs on a node with load capacitance. If VDD is the supply voltage, V swing

is the change in voltage level of the switched capacitance, C is the capacitance being switched and f

is the frequency of operation, the switching power is given by,

P switching = C x VDD x Vswing × α x f

Since in most of the cases,

 Vswing = VDD

Pswitching = C x V
2
DD × α × f

 Static power dissipation

1. This is the power consumed when the circuit is not in active mode of operation. In such a situation,

there is still some power dissipation due to various leakage mechanisms.

2. The situation is aggravated with the scaling of supply voltages. As the supply voltage is reduced,

to keep the delay of a gate unchanged, the transistors need to be turned ON early by reducing their

threshold voltages.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:56
 Email id: sujeetkumarnayak.in@gmail.com

3. This, in turn, increases the leakage current in the sub threshold range of operation of the circuit.

Due to the exponential nature of leakage current in the sub threshold range time of the transistor, it

can no longer be ignored. .

4. The International Technology Roadmap for Semiconductors (ITRS) has projected an exponential

increase in leakage power with minimization of devices.

5. Also, leakage increases with temperature. Thus, the Increased heat dissipation resulting from

increase in leakage power consumption has a positive feedback on leakage.

 6. There are three major leakage mechanisms sub threshold leakage gate direct tunneling and

junction band-to-band tunneling.

. Sub threshold leakage: When gate voltage is below threshold voltage but very close to it , sub

threshold conduction current flows between source and drain. It is caused by

The diffusion of minority carriers. It depends exponentially on the threshold voltage of the

transistor . in nano - scaled devices, short channel effect (SCE) reduces the threshold voltage, There

by increasing the sub threshold current.

 • Gate direct tunneling leakage: Due to ultra-thin gate oxide, a high electric field can cause

electrons to tunnel through the gate-oxide.This results in large gate leakage in nano scale transistors.

An increase in the supply voltage and/or reduction in oxide thickness result in an exponential

increases in gate tunneling current.

 • Junction band-to-band tunneling leakage: Application of reverse bias across the highly doped p-

n junction results in tunneling unction results in tunneling of electrons from valence band of p-side to

the conduction band to the n-side .This is called band to band tunneling. Due to the use of high

junction doping, large junction BTBT occurs at OFF state with the drain at VDD and substrate at

ground .The junction BTBT increases exponentially with an increase in junction doping and supply

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:57
 Email id: sujeetkumarnayak.in@gmail.com

voltage.

 Power Reduction Techniques

Power reduction can be attempted at all levels of design hierarchy - algorithm, architecture, logic,

and device levels. In the following we give an overview of each of these (except the device level on

which the embedded system designer often does not have any control). Higher the level at which

power minimization is addressed, higher is the expected power saving

Algorithmic power minimization

.It mainly focuses on reducing the number of operations requiring larger power in a target

implementation. For example, in many processors, the cost of an addition/subtraction operation may

be different from a logical operation.

.Thus, to check” whether x is equal to y" one may first perform a subtraction operation followed by

checking the status register for zero-bit.

 .On the other hand, if the logical operation takes lesser power, x may be directly compared with y

using a comparison instruction. The following are some of the important issues to be judged for

selecting a particular algorithm from alternatives.

1. Memory reference: This is very important as memory is normally off-chip from the

processor. A large number of accesses to the memory means good amount of activity in

the address/data bus lines. The memory access pattern is also important. If the access

pattern is sequential, only the least significant bits of address bus change, whereas, for

random access through the memory, most of the address bits will switch, thus creating higher

power dissipation

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:58
 Email id: sujeetkumarnayak.in@gmail.com

.2. Presence of cache memory: The presence and structure of cache memory plays an important

role. Cache can be fruitfully utilized to reduce both execution time and power of an implementation if

the underlying algorithm has got locality in its behavior . The locality may be both temporal and

spatial in nature. While a temporal locality refers to the fact that a memory location accessed at some

time is also likely to be accessed in near future, spatial locality means if a memory location is

accessed at some time, its neighbouring locations are also likely to be accessed in near future. Thus,

caching them inside the CPU cache saves not only the memory access time, but also the bus energy

consumption is reduced.

3 . Recomputation vs. memory load /store: Normal power minimization techniques at algorithm

level attempt to reduce the number of arithmetic operations. However, it may so happen that to

reduce the number of operations, some repeatedly performed computation is done only once and

stored at a memory location. Later, as and when necessary it is reloaded from the memory. This may

lead to increased power consumption due to extra memory accesses. If the operands are already

available in CPU registers or on-chip cache, it may be better to recompute the value, instead of

loading it from memory, from power consumption point of view.

4. Compiler optimization technique: The typical techniques used by an optimizing compiler can be

used to reduce power consumption of a piece of code. The strategies involve strength reduction,

common subexpression elimination, minimizing memory traffic, etc. Loop unrolling is also often

beneficial as it reduces loop overhead.

 5. Number representation: This is another area for algorithmic power trade-off. The following

points may be noted.

 • Fixed vs floating point representation: Fixed point operations are much simpler than floating

point ones. Thus, it normally leads to power saving, through accuracy may suffer.

 • Sign-magnitude 2's complement: Selection of sign-magnitude representation may have

significant power saving over 2's complement, if input samples are uncorelated and range is

minimized

.

• Precision of operations: This is important, since, having lower precision allows one to reduce the

size of space needed to store the values. A typical example of this is to reduce the number of bits in

mantissa portion in several signal processing applications including speech and image to improve

circuit delay and power.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:59
 Email id: sujeetkumarnayak.in@gmail.com

 Architectural power minimization

 1. The architectural level transformations can be used to introduce power saving in a design.

2. There are to generic techniques to save power at the cost of extra area , keeping the

performance of the system unaltered .these are parallelism and pipelining. Suppose we have

to design a system with supply voltage v and operating frequency f.

3. The system is expected to operate on a sequence of input data arriving at rate of f. Now, if

we duplicate to have n such similar modules and the input data is processed by the modules in

an inter leaved fashion, the blocks may operate at a lower speed-ideally, at a rate of f/n.

Since the system is capable of running frequency f and the speed of a system is proportional

to the supply voltage, we reduce the supply from v to v/n. This will effectively reduce the

power consumed by the individual blocks by a factor of n (as power consumption is

proportional to the square of supply voltage). Since all such systems are operating

simultaneously, total power saving is in of the original power.

 4. A problem with the scheme is that the hardware is duplicated with other necessary

multiplexing an demultiplexing logic. Another possible architectural modification often

suggested is pipelining. In this scheme, the functional block is divided into a sequence of sub-

blocks, each of approximately same delay. Thus, if the number of sub-blocks be n, from

pipelining principle, the overall system can produce output at a rate of about nix f. Now, if the

supply voltage of individual stages is reduced by a factor of r. power reduces by a factor of 1/n.

However, we need to accommodate extra latches between the stages for proper synchronization

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:60
 Email id: sujeetkumarnayak.in@gmail.com

between them. This introduces some overhead in terms of area, performance and power as well.

Logic and circuit level power minimization

1. Static vs dynamic logic families : CMOS logic can be realized as static or dynamic Depending

upon the signal transition probabilities, one of the design styles may edge over the other. For

example, for a two-input NAND gate with uniform distribution for the inputs, the probability that the

output is zero is 0.25, the probability of output being one is 0.75. Thus, the probability of a power0

→ 1 transition is 0.25 X 0.75 = 0.1875. On the other hand, for a dynamic input is always precharged

to 1. Thus, power will be consumed whenever output is 0. Hence, the probability of a power

consuming transition is 0.25, which is higher than a static gate. However, dynamic gate has lower

input capacitance (almost factor of 2 to 3) compared to static gate, as the p-network is absent. Hence,

the effective capacitance that a dynamic gate sees is much lower. But, the power consumed in

distributing the precharging signal also needs to be considered.

2. Glitches and hazards: This is another potential source of power consumption, particularly static

CMOS circuits. A glitch at the output of a gate can come due to the differences in arrival times of

input signals. A typical example of it is AND-OR-INVERT based implementation of the function f =

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:61
 Email id: sujeetkumarnayak.in@gmail.com

ab + āc . Assume that, b and c are always 1, while a is making a transition from 1 to 0. Ideally,

output should remain fixed at 1, however, due to the delay introduced by the inverter, the output z

will continue to be 0, when y is also 0. This changes the output f to 0. Thus, y, instead of remaining

fixed at 1, will show a transition 1 0 1, introducing a glitch. The glitch can be removed by adding a

redundant AND gate for the term be and feeding the output to the OR gate. It may be noted that

dynamic logic does not suffer from any glitch power consumption since all inputs must be valid

before the gate evaluates.

3. Technology mapping: The logic synthesis library often contains different implementations of the

same logic module. They normally differ in terms of area, delay, power, etc. A logic synthesis

procedure targeted to power minimization may choose implementations that require higher area or

delay, but score better in terms of power. For example ,consider a four –input AND function. The

ON-probabilities of the gates are also shown. Total 0 1 transition probability of the first

implementation is 0.25 x 0.75 +0.25 X 0.75 +0.9375 x 0.0625 = 0.4336. For the second

implementation, it is, 0.25 x 0.75 + 0.125 x 0.875

Control logic power minimization

 Power optimization of controller circuitry is very important. This is because while the data path of a

design can be selectively turned OFF when not in use, controller is always active. A controller is

often specified and realized as a Finite State Machine (FSM).

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:62
 Email id: sujeetkumarnayak.in@gmail.com

1. Storage element design: Several flip-flop design have been reported in the literature with various

area-power trade-offs.

 2. State assignment: This is the assignment of binary codes to the FSM states to realize it.For low

power state encoding, first the steady-state probability for each of the states is determined.

Next, the transition probabilities between the states are calculated. Codes with lesser Hamming

distance are allocated to the states having higher transition probabilities between them. This

minimizes the number of transitions in the next-state and Output combinational logic .

3. FSM partitioning: Often it is the case that the FSM states form clusters. Once the FSM is in some

state belonging to a cluster, the probability of its remaining within the states of this cluster for quite a

few transitions is high. Probabilities of inter-cluster transitions are low. Thus, the FSM can be

partitioned into two or more sub-FSMs. At any point of time, only one sub-FSM is active. We can do

two things with the remaining sub machines The first alternative is to stop clocks to them and make

sure that their primary input lines are masked-off. This is commonly known as clock gating. Thus,

there is no dynamic power consumption in these sub-FSMS The other alternative is to use power

gating by introducing sleep transistors to turn OFF power supply to them. Figure 10.6 shows

introduction of sleep transistors. Power rating reduces leakage power as well, however, wake-up

takes time. Thus, either the circuit performance suffers, or we have to turn ON probable active sub-

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:63
 Email id: sujeetkumarnayak.in@gmail.com

FSMS early--this lead to wastage of power as more than one sub-FSMs are active.

 System Level Power Management

The techniques discussed so far are good to the extent that they deal with local subsystems In an

embedded system, consisting of various subsystems. It may be possible that all of them are not

needed simultaneously to remain active. Thus, it needs a system level management policy to turn

OFF and turn ON the subsystems. A suitable power management policy is needed for the following

purposes

• going to a low power state takes time. The longer the duration for which we want to shutdown a

system, higher is the time taken during reactivation

 • Avoiding a power-down mode will cost unnecessary power

 • Frequent power-down mode will affect system performance.

A naive approach may be to power-down a system whenever there is no request. This will definitely

affect performance severely. A more sophisticated method is to use predictive shutdown. In this

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:64
 Email id: sujeetkumarnayak.in@gmail.com

approach, the goal is to predict the next arrival of service request and wake up the system just before

that. Prediction can be made in several different ways as follows.

1. Fixed time : If the system does not receive any service request during an interval of length

TON it shuts down for a fixed period of time TOFF .Choice of TON and TOFF may be made

experimentally by studying system behavior.

2. Analyzing System State : In this approach, there is a constant monitoring of the service

requests .The monitoring is done via a power manager that observes the system components –

the service provider ,the service requestor ,and the queue between them.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:65
 Email id: sujeetkumarnayak.in@gmail.com

 MODULE-4

Hardware-Software Partitioning

Embedded systems typically consist of application-specific hardware part (containing ASIC, FPGA

etc.) and software part running on general purpose processors, digital signal processors (DSPs) etc

1- Advancement on both the fronts-high level synthesis to produce custom hardware, and software

development and compilation techniques to exploit the features of general processors to their limits,

has ushered in a new challenge in embedded system design.

 2-A compiler for embedded system cannot only be a silicon compiler (converting a specification to

hardware) or a highly optimized language compiler for a target processor , it should also e able to

partition the specification into a number of software and hardware modules.

 3- Such practitioners must be extremely fast as they have to explore a good amount of design Space

in terms of hardware, software, and communications between them.

4-The criteria to optimize may be implementation area, performance, power consumption, etc., or a

mix of a number of such factors.

There are quite a few approaches to solve this partitioning problem. Some of these are as follows.

1. Integer Linear Programming (ILP)

2. Heuristic approaches, such as, Kernighan-Lin algorithm

 3. Meta search techniques, like

(a) Genetic algorithm (GA)

 (b) Simulated annealing (SA)

 (c) Particle swarm optimization

Partitioning Using Integer Programming

Integer programming is a mathematical tool to solve constrained optimization problems. It has been

used by many researchers to solve the hardware software partitioning problem as well

This section introduces a formulation of the hardware software partitioning problem using integer

programming .

 For this, the following definitions are needed.

the target architecture consists of an ASIC h, a set of processors P =(P1, ..., Pnp) . external memory

and buses between them. The set of target architecture components is defined as

TA= {h} UP.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:66
 Email id: sujeetkumarnayak.in@gmail.com

Extending KL-heuristic for hardware software partitioning

KL heuristic to hardware-software partitioning, the following points are to be noted

1.The objective of partitioning a task graph into hardware and software modules is to

achieve better performance. From this angle, the cut-size metric is conveniently replaced by

execution time metric. Execution time of node n. represented as n.et (execution time), is given by,

n.et = n.ict + n.ct

 n.ict is the internal computation time of node n. It may be noted that it can represent either the

hardware time or the software time based upon the mapping of the node n to hardware or software

respectively. n.ct encompasses the computation times of the tasks called by task n.

2. Basic k-l algorithm assumes a balanced partition. each move is a swap of a pair or nodes belonging

to two partitions .thus the partitioned size are always balanced .in hw- sw partitioning we have two

parts software and hardware.

3.Use better data structure for faster move selection .in k-l huristic to select the move the resulting

in maximum gain ,we need to try out all possible moves and then select from them .this involves

good amount of computation.

2 Partitioning Using Genetic Algorithm

. Genetic Algorithm (GA) is a stochastic search algorithm based on operations of natural genetics

. Here a fixed-sized Population of chromosomes evolves over a number of generations following the

principle of natural selection.

. Each chromosome identifies a potential solution .

. A chromosome has got an associated fitness measure using the operators similar to mutation in

nature, the population evolves through generations.

. In the hardware software partitioning problem, a chromosome is a bit-string. If there are n nodes in

the task graph to be partitioned, a chromosome is also taken to be n-bit long with the ith bit

identifying the partition for the ith node. It can be conveniently assumed to be o if the node is put into

the hardware partition and 1 for software (or vice versa). A fixed number of such chromosomes can

be created randomly to represent the initial population.

. As the software and hardware cost metrics (like area, time delay. power of all nodes are

known, for a chromosome, we can evaluate its fitness by considering the overall delay,

hardware area, power, etc.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:67
 Email id: sujeetkumarnayak.in@gmail.com

.To evolve a new generation, the top small percentage of chromosomes are directly copied to the next

generation. Rest of the population is created by two operators---crossover and mutation.

.The crossover operator selects two parent chromosomes to participate in the operation. Their parts

are exchanged to create new offspring. The crossover may be single-point, multipoint, etc.

. The mutation operator may be implemented by selecting a parent chromosome and randomly

complementing some of its bits (that is, changing partitions). The mutation rate can be controlled to

control the rate of convergency to local or global minima.

.The main drawback of such genetic approach is the slow rate of convergence. It often requires the

GA to evolve a large number of generations to converge to a solution.

.The termination criteria is often set to be "no improvement in last few generations" or a maximum

number of generations for which the GA has run. The best solution at the end is taken to be the

solution of the partitioning problem. To accelerate the rate of convergence, the mutation Tate can be

increased, however, it mostly converges to local best solutions, rather than finding the global best.

 Partitioning Using Particle Swarm

 Optimization (PSO)

Particle Swarm Optimization (PSO) is a population based stochastic technique developed by

Eberhart and Kennedy in 1995. The PSO algorithm is inspired by social behaviour of bird flocking or

fish schooling. In PSO. the potential solutions, called particles, fly through the problem Space by

following the current optimum particles. PSO has been successfully applied in many areas, and

has been found to outperform GA in Cost function and execution time.

.Consider the following scenario: a group of birds are randomly searching for food in an area. There

is only one piece of food in the area being searched. None of the birds know exactly where the food

is. During each iteration, they learn via their in how far the food is. So the best strategy to find

where the bird is nearest to the food.

.PSO is learnt from this bird-flocking scenario, and used to solve the optimization problems. Each

single solution (particle) is perceived as a bird in the search space Each particle has a fitness value

which is evaluated by the fitness function (the cost function is to be optimized and has a velocity

which directs its flight. The particles fly through the following the current optimum particles.

.PSO is initialized with a group of random particles (solutions) and then searches for optima by

updating through generations. During every generation (Iteration), each particle is updated by

following two best values. The first one is the position vector of the best solution this particle has

achieved so far. This fitness value is also stored along with the particles this position is called pbest.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:68
 Email id: sujeetkumarnayak.in@gmail.com

Another best position that is tracked by the particle swarm optimizer is the global best position,

obtained so far, by any particle in the population. This hi is the current global best and is called gbest.

Functional Partitioning and Optimization

.In the previous chapter, we have seen various strategies for distributing the tasks of an application

among the available hardware and software platforms.

. This has essentially resulted in various schemes for hardware software partitioning to optimize

different design goal area, delay, power, etc. However at the specification stage of a system.

. The main emphasis clean goal description of the system. understandable by the system designers.

This helps in efficient management of the design in terms of its testing, validation, up gradation,

modification so on.

.The issue of a good implementable of the system is not a major concern.

. As a result it is very much possible that the initial specification is not amenable to a good design and

necessitates several refinements to lead to another specification that results in good implementation.

. For example, the initial specification may be given in terms of a set of user-defined procedures.

These procedures identify the conceptual module that the user visualizes the system to be consisting

of. There may be commonality between the procedures may be quite large or very small. Thus, taking

each procedure as a task in the task-graph and trying to perform hardware software partitioning over

the set may lead to poor solutions Though this initial set of procedures may act as a good starting point, the

set needs to be regrouped and reconsidered for various optimizations possible.

. In this chapter, we will first look into the problem of functional partitioning of a large behavioural

process into a set of procedures. Next, we will look into a set of optimizations that may be carried out

over a behavioural specification to lead to better implementation.

 Functional partitioning:

.The process of functional partitioning divides a given functional specification of a system into a set

of sub-specifications.

. Each sub-specification corresponds to a task that is ultimately mapped onto a custom hardware or to

a software module to execute on a general purpose processor. Thus, it divides a large functional

specification into a set of smaller ones.

.The approach has got several advantages as enumerated below.

1. It often results in order of magnitude reduction in the runtimes for logic synthesis. This happens

because most of the heuristics used in logic synthesis work well for small- to medium-sized

inputs. For large inputs, the quality of the solution degrades also the runtime increases

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:69
 Email id: sujeetkumarnayak.in@gmail.com

disproportionately. The tools are also not linear in runtime, in the sene that.sum of runtimes

for synthesizing several small processes can be much less than the run time for one large process.

 2. The overall system performance may also improve, if the smaller processes can be synthesized in

the custom hardware with small clock periods than the large hardware needed for the large

specification and when the shorter periods outweigh the overhead of inter processor communication.

 3. The partitioning also brings the scope of further parallelization between the tasks.

 4. This may result in improved satisfaction of input-output and size capacity constraints on a

package such as FPGA. It can significantly reduce the number of inter-package signals and may lead

to fewer packages, smaller board size, reduced overall cost.

 Model

.The input to the functional to the functional partitioning process is a single behavioural process X,

which may for example, be a C or VHDL code.

. The process describes the behavioural of a complex system and the description consists of

numerous operations, requiring many hundreds or thousands of lines of sequential program

code.

.The process X can be viewed to be consisting of a set of procedures F=(f1,f2,……fn) , with one

being the main procedure which in turn calls other procedures. Any procedure can call others

excepting the main procedure. A variable in the program is also treated as a simple procedure, with

reads and writes being the procedure calls.

. functional partitioning of F creates a partition P consisting a set of parts {P1,P2 ... Pm. } such that

every procedure fi is assigned to a single part Pi, that is, P1UP2U...UP = F and op . = for all i E {1,2,

... n} and j e {1,2,...m},

i j. Each part pj will be implemented either by a custom hardware or as a software process running on

a general purpose processor.

The model used can be the call graph of the process. Figure shows an example model for a process

Mwt consisting of a global variable level of type byte. It also has a number of other procedures as

noted next

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:70
 Email id: sujeetkumarnayak.in@gmail.com

functional Partitioning and optimization

High-level Optimizations

In this section, we will discuss about the optimization techniques that can be applied to a

process description at higher level. We will mainly look into three powerful techniques used in

enhancing embedded specifications. These are,

1.Loop optimization

2.Float to fixed-point conversion

3.Data structures such as array optimizations

it can be applied to a e powerful optimization

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:71
 Email id: sujeetkumarnayak.in@gmail.com

loop optimization

.Among the various parts in aspecification loop optimization plays a vital role in improving the

overall system performance .

.This is mainly because of the fact that the loop bodies are executed repeatededly within the operation

of anembedded system .

.Thus a small saving in terms of delay or power in the execution of a single iteration of a loop can be

very much effective in producing a good saving of the quantity.

.There have been several strategies proposed for loop optimization.

The commonly used techniques are the following

1. Loop interchange/Permutation

2. Loop splitting/peeling

3. Loop fusion/combining

4. Loop fission/distribution

5. Loop unrolling

6. Loop unswitching

7. Loop-invariant code motion

8. Loop tilling/blocking

 Loop interchange/permutation

It is the process of exchanging the order of two loops .one major utility of such a transformation is to

improve the cache performance for accessing array elements .For example considering the following

the code sequence

for I =1 to 1000 do

 for j =1to 1000 do

a [I,j] =b[I,j]+c[I,j]

in this case the array elements are accessed in the order of indices (1,1),(1,2),(1,3),…………For a

row major organization of the arrays. the memory locations are accessed successively.

 for I =1 to 1000 do

 for j =1to 1000 do

a [I,j] =b[I,j]+c[I,j]

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:72
 Email id: sujeetkumarnayak.in@gmail.com

however it is not mandatory that interchanging of loops will always lead to better cache utilization.

For example considering the following code fragment for

 I =1 to 1000 do

 for j =1to 1000 do

a [I,j] =b[I,j]+c[I,j]

For a column major organization of the b-array ,a loop interchange will bring locality into the

accessing pattern of it .it will ruin the locality behavior of a-and c-arrays. Also it may not always be

safe to exchange the iteration variables due to dependencies between the statements for the order in

which they must execute.

Loop Splitting/Peeling

 very often, in the specification of a process, we have some condition checks nested deep within a set

of loops. A typical example is in the field of image filtering. The filtered value of a pixel is often

computed as a weighted sum of itself and its neighbours. Though for inner pixels, all the neighbours

exist, for the boundary pixels, a number of neighbours may be absent. Thus the typical processing

runs over two loops as shown next.

for I =1 to num_rows do

 for j = 1 to num.cols do

Check for boundaries

if boundary pixel then

do special processing

 else do normal processing

In this code, the check for boundary conditions is repeated for each non-boundary pixels as well. The

loop can be split as follows.

For I = 2 to num_rows -1 do

 for j = 2 to num_cols -1 do

Normal processing

Special processing for all boundary pixels

 A useful special case of loop splitting is loop peeling, that simplifies a loop with problematic first or

few iterations separately before starting the loop. For example, consider the following code fragment

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:73
 Email id: sujeetkumarnayak.in@gmail.com

P= 10

for I =1 to 10 do

y[i] = x[i] + x[p]

p=i

Here, only for the first iteration p is equal to 10, for the rest it is i-1. Thus, the loop be modified as

follows.

Y[1] = x[1] +x [10]

for i=2 to 10 do

y[i] = x[i] + x[i-1]

High-level Optimizations

Loop fusion and fission

Loop fusion/jamming is a transformation that replaces multiple loops by a single one . the reverse

process is loop fission/distribution. Fission may be advantageous if the target processor provides

zero-overhead loop instructions that can be only used in

association with small loop bodies. On the other hand, loop fusion may lead to improved cache

behaviour and possibility of parallelism within the

loop body:

Loop fusion

for i=1 to n do pl) = ... for j = 1 to n do pl] =pO] + ...

Loop fission

for j = 1 to n do pl] =... pl] = pi + ...

 Loop unwinding/unrolling

 This is a loop transformation technique that attempts to optimize the performance of a process at the

expense of its size.

The goal is to reduce speed by reducing (or eliminating) the end-of-ioop test on each iteration.

Loops can be rewritten as a sequence of statements and thus eliminate the loop controller

overhead. The speed gained may offset the performance degradation due to the increased size

of the code, and thus result in significant saving of processing time. Moreover, if the execution

of the statements of the loop in an iteration are independent of previous iterations, all these

statements can be executed in parallel. Thus. loop unrolling opens up the avenue of large-scale

parallelism. The following example shows the case in which the loop has been unrolled once. for

j = 1 to n do p[j]

for j = 1 to n step 2 do

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:74
 Email id: sujeetkumarnayak.in@gmail.com

P[j] =

P[j + 1] = ... The number of copies of the loop is called the unrolling factor. For the above example,
the unrolling factor is two. Higher unrolling factors are also possible. In the extreme case, loops can
be completely unrolled, removing control overhead and branches altogether. Unrolling is normally
restricted to loops with a constant number of iterations.

Loop unswitching This essentially means moving a conditional from inside a loop body to the
outside, by duplicating the loop body. A version of the loop body is placed inside each of the if- and
else clauses of the conditional. Since modern processors can operate fast on vectors, it can improve
the overall speed of execution, though the code size is doubled, as the loop body is duplicated. The
following shows the case of loop unswitching.

For i=1 to 1000 do

X[i]=x[i]+y[i]

If(w)theny[i]=0

if (w) then

for i = 1 to 1000 do

 x[i]=x[i]+y[i]

y[i]= 0

else

for i = 1 to 1000 do

x[i] = x[i] + y[i]

Loop-invariant code motion

Loop-invariant code refers to the statements which can be moved outside the body of the loop

without with out affecting the semantics of the process description. The process of removing such

code outside is called loop-invariant code motion, hoisting, or scalar promotion. The hoisted out

code is executed less often providing a speedup. The following example shows the removal of two

loop-invariant code fragments outside the loop.

 For i = 1 to n do

X=y+z

A[i]=6*i+x*x

X=y+z

T1=x*x

for i=1 to n do

a[i] = 6*i + t1

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:75
 Email id: sujeetkumarnayak.in@gmail.com

Loop tiling

It is also known as loop blocking, strip mine and interchange, unroll and jam, and super node

partitioning. This optimization makes the execution of certain types of loops more efficient

particularly from the cache utilization point of view. For example, for the routines that involving

handling large arrays, the cache size may not be sufficient to hold enough data for a single iteration

of loops. In such cases, the loop indices are divided into sub-ranges. Each sub range is processed by

the iteration of inner loops. The outer loop indices change in the terms sub-ranges. A typical example

of this is the matrix-vector multiplication algorithm show below.

For i=1 to N do

 for j = 1 to N do

c[i] = c[i] +a[I,J] * b[J]

 After a 2 x 2 tiling of the loops, the structure becomes,

 for i = 1 to N step 2

 for j = 1 to N step 2

 for ii = i to min(i +2, N)

for jj = j to min(j+2, N)

c[i] = c[ii] + a[ii, jj]*b[jj]

 B x B tiling for the full matrix multiplication.

for j = 1 to N do

 for k = 1 to N do

r = X[I,k]

for j = 1 to N

 Z[I,j]=z[I,j]+r*Y[K,j]

for kk = 1 to N do step B do

 for j = 1 to N step B do

 for i = 1 to N do

for k= kk to min(kk+B-1,N) do

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:76
 Email id: sujeetkumarnayak.in@gmail.com

r=x[I,k]

for j= jj to min(jj+B-1,N) do

 z[i.j]=z[I,j]+r*y[k,j]

Hardware Software Cosimulation

.simulation is one of the most effective measures to ensure system correctness, since an embedded

system design consists of interacting software and hardware components it is very much essential

that a simulation of the system includes simulating both, along with interactions.

. cosimulation has been done late in the process, after the hardware has been deemed to be mostly

working, that is stable, such that it can interact properly software.

. Software developers used to develop their code with limited facility to absence of the hardware

platform. Painful integration efforts were needed towards the design cycle, and minor

miscommunication became major design flaws.

. Most of these problems would be patched up in software at the cost of performance or even

expensive of hardware/software.

The typical usage of cosimulation during code sign are as follows .

• Verification of system specification to check whether the specification is as per the system

designer.

•Verification of system implementation.

 • Performance estimation to be used during system partitioning.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:77
 Email id: sujeetkumarnayak.in@gmail.com

Co simulation Approaches

There can be several approaches to hardware Software cosimulation ranging from very detailed gate-

level model) to very abstract (such as instruction-level model) while the hardware simulation can be

performed using Hardware Description Language (HDL)simulators soft ware is typically simulated

using Instruction Set Simulator (ISS). A very simplistic approach for co simulation could be as

follows.

. Use an HDL model of the microprocessor that will run the software part.

. Using HDL models of specific hardware synthesized for the hardware part.

 .Integrating all models to perform a full simulation.

This approach is known as homogeneous simulation as all the modules are simulated using the same

simulator.

. A more generic model is the heterogeneous cosimulation working on the following principle.

.Use an instruction set simulator model of microprocessor that runs the software.

. Use HDL model for simulating the hardware.

. Create communication between the simulators.

. Simulators run separately excepting when transferring data.

In some sense, a heterogeneous simulator networks different types of simulators as shown

 Heterogeneous simulators incur high overhead due to the voluminous data transfer between

hardware and software simulators. The percentage of time that the software accesses

hardware is called the hardware density of simulation. Heterogeneous simulation affords better

ability to match a task with a tool. A typical example of such a simulator is Synopsis’s Eaglei that

lets the hardware run in many simulators and the software on the native PC/workstation or in

instruction-set simulator (ISS). For the hardware portion, HDL simulators are generally used.

However, simulation runs at a much slower rate. Thus, it may be difficult to catch many of the

practical problems. For such a situation, in the absence of real hardware, a prototype realized on

FPGA may be used. Such a concept is known as emulation. It is a special simulation environment

with hardware. The following are some of its features.

. Runs whole design as compared to HDL simulators where only a part may be simulated.

 • Expensive compared to pure software simulation.

 • may run at 10% of real-time, thus much closer to the actual hardware speed. The software

simulation runs rather slowly.

 Sujeet kumar nayak EMBEDDED SYSTEM PAGE NO:78
 Email id: sujeetkumarnayak.in@gmail.com

 • allows designers of large products to find problems that cannot be found in simulator.

 • Real devices can be attached with the FPGA based hardware emulators. This helps in visualizing

entire system and check its functional correctness.

Heterogeneous simulation

